Computer Vision on Mars

Increasing the level of spacecraft autonomy is essential for broadening the reach of solar system exploration. Computer vision has and will continue to play an important role in increasing autonomy of both spacecraft and Earth-based robotic vehicles. This article addresses progress on computer vision for planetary rovers and landers and has four main parts. First, we review major milestones in the development of computer vision for robotic vehicles over the last four decades. Since research on applications for Earth and space has often been closely intertwined, the review includes elements of both. Second, we summarize the design and performance of computer vision algorithms used on Mars in the NASA/JPL Mars Exploration Rover (MER) mission, which was a major step forward in the use of computer vision in space. These algorithms did stereo vision and visual odometry for rover navigation and feature tracking for horizontal velocity estimation for the landers. Third, we summarize ongoing research to improve vision systems for planetary rovers, which includes various aspects of noise reduction, FPGA implementation, and vision-based slip perception. Finally, we briefly survey other opportunities for computer vision to impact rovers, landers, and orbiters in future solar system exploration missions.

[1]  Omead Amidi,et al.  3-D Site Mapping with the CMU Autonomous Helicopter , 1998 .

[2]  Barry A. Bodt,et al.  Technology readiness level six and autonomous mobility , 2004, SPIE Defense + Commercial Sensing.

[3]  W. James MacLean,et al.  A Real-Time Large Disparity Range Stereo-System using FPGAs , 2006, Fourth IEEE International Conference on Computer Vision Systems (ICVS'06).

[4]  Hanumant Singh,et al.  Visually Navigating the RMS Titanic with SLAM Information Filters , 2005, Robotics: Science and Systems.

[5]  Larry H. Matthies,et al.  Attenuating stereo pixel-locking via affine window adaptation , 2006, Proceedings 2006 IEEE International Conference on Robotics and Automation, 2006. ICRA 2006..

[6]  Reid G. Simmons,et al.  Perception, Planning, and Control for Autonomous Walking With the Ambler Planetary Rover , 1996, Int. J. Robotics Res..

[7]  Yang Cheng,et al.  Path following using visual odometry for a Mars rover in high-slip environments , 2004, 2004 IEEE Aerospace Conference Proceedings (IEEE Cat. No.04TH8720).

[8]  B. Hapke Bidirectional reflectance spectroscopy , 1984 .

[9]  K. Di,et al.  SURFACE IMAGERY BASED MAPPING AND ROVER LOCALIZATION FOR THE 2003 MARS EXPLORATION ROVER MISSION , 2005 .

[10]  Brian H. Wilcox,et al.  Sojourner on Mars and Lessons Learned for Future Plantery Rovers , 1998 .

[11]  Eric Krotkov,et al.  The DARPA PerceptOR evaluation experiments , 2007, Auton. Robots.

[12]  J.J. Biesiadecki,et al.  The Mars Exploration Rover surface mobility flight software driving ambition , 2006, 2006 IEEE Aerospace Conference.

[13]  Takeo Kanade,et al.  A perception system for a planetary explorer , 1989, Proceedings of the 28th IEEE Conference on Decision and Control,.

[14]  Takeo Kanade,et al.  Ambler: an autonomous rover for planetary exploration , 1989, Computer.

[15]  James R. Bergen,et al.  Visual odometry for ground vehicle applications , 2006, J. Field Robotics.

[16]  Simon Lacroix,et al.  Position estimation in outdoor environments using pixel tracking and stereovision , 2000, Proceedings 2000 ICRA. Millennium Conference. IEEE International Conference on Robotics and Automation. Symposia Proceedings (Cat. No.00CH37065).

[17]  Erann Gat,et al.  Mars microrover navigation: performance evaluation and enhancement , 1995, Proceedings 1995 IEEE/RSJ International Conference on Intelligent Robots and Systems. Human Robot Interaction and Cooperative Robots.

[18]  Gaurav S. Sukhatme,et al.  A portable, autonomous, urban reconnaissance robot , 2000, Robotics Auton. Syst..

[19]  M. Klimesh,et al.  Mars Exploration Rover engineering cameras , 2003 .

[20]  Takeo Kanade,et al.  Introduction to the Special Issue on Physical Modeling in Computer Vision , 1991, IEEE Trans. Pattern Anal. Mach. Intell..

[21]  Takeo Kanade,et al.  A visual odometer for autonomous helicopter flight , 1999, Robotics Auton. Syst..

[22]  T. Williamson A high-performance stereo vision system for obstacle detection , 1998 .

[23]  Jonathan A. Bornstein Army ground robotics research program , 2002, SPIE Defense + Commercial Sensing.

[24]  Mike McHenry,et al.  Detecting water hazards for autonomous off-road navigation , 2003, SPIE Defense + Commercial Sensing.

[25]  Andrew E. Johnson,et al.  Field Testing of the Mars Exploration Rovers Descent Image Motion Estimation System , 2005, Proceedings of the 2005 IEEE International Conference on Robotics and Automation.

[26]  John R. Wright,et al.  Mars Exploration Rover surface operations: driving spirit at Gusev Crater , 2005, 2005 IEEE International Conference on Systems, Man and Cybernetics.

[27]  Gudrun Klinker,et al.  A physical approach to color image understanding , 1989, International Journal of Computer Vision.

[28]  Jonathan M. Garibaldi,et al.  Real-Time Correlation-Based Stereo Vision with Reduced Border Errors , 2002, International Journal of Computer Vision.

[29]  T. Kanade,et al.  Toward autonomous driving: the CMU Navlab. I. Perception , 1991, IEEE Expert.

[30]  Larry Matthies,et al.  Stereo vision and rover navigation software for planetary exploration , 2002, Proceedings, IEEE Aerospace Conference.

[31]  Andrew E. Johnson,et al.  AN OPTICAL MODEL FOR IMAGE ARTIFACTS PRODUCED BY DUST PARTICLES ON LENSES , 2005 .

[32]  Steven Dubowsky,et al.  Online terrain parameter estimation for wheeled mobile robots with application to planetary rovers , 2004, IEEE Transactions on Robotics.

[33]  Larry H. Matthies,et al.  Error analysis of a real-time stereo system , 1997, Proceedings of IEEE Computer Society Conference on Computer Vision and Pattern Recognition.

[34]  Martin D. Levine,et al.  Computer determination of depth maps , 1973, Comput. Graph. Image Process..

[35]  John Iselin Woodfill,et al.  Tyzx DeepSea High Speed Stereo Vision System , 2004, 2004 Conference on Computer Vision and Pattern Recognition Workshop.

[36]  Larry H. Matthies,et al.  Error Modelling in Stereo Navigation , 1986, FJCC.

[37]  Larry H. Matthies,et al.  MER-DIMES: a planetary landing application of computer vision , 2005, 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'05).

[38]  K. Di,et al.  Spirit rover localization and topographic mapping at the landing site of Gusev crater, Mars , 2006 .

[39]  Takeo Kanade,et al.  Vision-Based Autonomous Helicopter Research at Carnegie Mellon Robotics Institute 1991-1997 , 1998 .

[40]  A. R. Johnston,et al.  A Scanning Laser Rangefinder for a Robotic Vechicle , 1977, IJCAI.

[41]  Stergios I. Roumeliotis,et al.  The JPL Autonomous Helicopter Testbed : A Platform for Planetary Exploration Technology Research and Development , 2006 .

[42]  Pietro Perona,et al.  Slip Prediction Using Visual Information , 2006, Robotics: Science and Systems.

[43]  Edward Tunstel,et al.  Mars exploration rover surface operations: driving opportunity at Meridiani Planum , 2005, IEEE Robotics & Automation Magazine.

[44]  Jeffrey J. Biesiadecki,et al.  Attitude and position estimation on the Mars exploration rovers , 2005, 2005 IEEE International Conference on Systems, Man and Cybernetics.

[45]  Larry H. Matthies,et al.  Vision Guided Landing of an Autonomous Helicopter in Hazardous Terrain , 2005, Proceedings of the 2005 IEEE International Conference on Robotics and Automation.

[46]  A. Kelly,et al.  Obstacle detection for unmanned ground vehicles: a progress report , 1995, Proceedings of the Intelligent Vehicles '95. Symposium.

[47]  G. Salgian,et al.  Electronically directed "focal" stereo , 1995, Proceedings of IEEE International Conference on Computer Vision.

[48]  Philippe Bidaud,et al.  Modeling robot-soil interaction for planetary rover motion control , 1998, Proceedings. 1998 IEEE/RSJ International Conference on Intelligent Robots and Systems. Innovations in Theory, Practice and Applications (Cat. No.98CH36190).

[49]  Richard Szeliski,et al.  Symmetric Sub-Pixel Stereo Matching , 2002, ECCV.

[50]  T. Kanade,et al.  Real-time and 3D vision for autonomous small and micro air vehicles , 2004, 2004 43rd IEEE Conference on Decision and Control (CDC) (IEEE Cat. No.04CH37601).

[51]  Takeo Kanade,et al.  Toward autonomous driving: the CMU Navlab. Part I - Perception , 1991, IEEE Expert.

[52]  Takeo Kanade,et al.  Toward autonomous driving: the CMU Navlab. Part II - Architecture and Systems , 1991, IEEE Expert.

[53]  Stefan Schaal,et al.  Incremental Online Learning in High Dimensions , 2005, Neural Computation.

[54]  Kurt Konolige,et al.  Small Vision Systems: Hardware and Implementation , 1998 .

[55]  W. Schofield Overview and update. , 1987 .

[56]  Larry H. Matthies,et al.  Visual odometry on the Mars exploration rovers - a tool to ensure accurate driving and science imaging , 2006, IEEE Robotics & Automation Magazine.

[57]  Joseph Goguen,et al.  MOC2DIMES: A Camera Simulator for the Mars Exploration Rover Descent Image Motion Estimation System , 2005 .

[58]  Takeo Kanade,et al.  Surface Reflection: Physical and Geometrical Perspectives , 1989, IEEE Trans. Pattern Anal. Mach. Intell..

[59]  Eric Krotkov,et al.  The Defense Advanced Research Projects Agency (DARPA) Tactical Mobile Robotics Program , 1999, Int. J. Robotics Res..

[60]  Jonathan A. Bornstein,et al.  Overview and update of the Demo III Experimental Unmanned Vehicle Program , 2000, Defense, Security, and Sensing.

[61]  Randel A. Lindemann,et al.  Mars Exploration Rover mobility assembly design, test and performance , 2005, 2005 IEEE International Conference on Systems, Man and Cybernetics.

[62]  Larry H. Matthies,et al.  Enhanced real-time stereo using bilateral filtering , 2004, Proceedings. 2nd International Symposium on 3D Data Processing, Visualization and Transmission, 2004. 3DPVT 2004..

[63]  Larry H. Matthies,et al.  The Mars Exploration Rovers Descent Image Motion Estimation System , 2004, IEEE Intell. Syst..

[64]  Steven W. Squyres,et al.  Sedimentary rocks at Meridiani Planum: Origin, diagenesis, and implications for life on Mars , 2005 .

[65]  James J. Little,et al.  Mobile Robot Localization and Mapping with Uncertainty using Scale-Invariant Visual Landmarks , 2002, Int. J. Robotics Res..

[66]  Hans P. Moravec,et al.  The Stanford Cart and the CMU Rover , 1983, Proceedings of the IEEE.

[67]  Sebastian Thrun,et al.  A Probabilistic On-Line Mapping Algorithm for Teams of Mobile Robots , 2001, Int. J. Robotics Res..

[68]  Takeo Kanade,et al.  3-D Vision Tech-niques for Autonomous Vehicles , 1988 .

[69]  Todd Jochem,et al.  Rapidly Adapting Machine Vision for Automated Vehicle Steering , 1996, IEEE Expert.

[70]  Larry H. Matthies,et al.  Stereo vision for planetary rovers: Stochastic modeling to near real-time implementation , 1991, Optics & Photonics.

[71]  Alan M. Thompson The Navigation System of the JPL Robot , 1977, IJCAI.

[72]  Takeo Kanade,et al.  A stereo machine for video-rate dense depth mapping and its new applications , 1996, Proceedings CVPR IEEE Computer Society Conference on Computer Vision and Pattern Recognition.

[73]  M. Shimizu,et al.  Precise sub-pixel estimation on area-based matching , 2001, Proceedings Eighth IEEE International Conference on Computer Vision. ICCV 2001.

[74]  A. Chena,et al.  Autonomous Landmark Based Spacecraft Navigation System , 2004 .

[75]  Douglas A. O'Handley Scene analysis in support of a Mars rover , 1973, Comput. Graph. Image Process..

[76]  Larry H. Matthies,et al.  Design Through Operation of an Image-Based Velocity Estimation System for Mars Landing , 2007, International Journal of Computer Vision.

[77]  Andrew Zisserman,et al.  A Statistical Approach to Texture Classification from Single Images , 2004, International Journal of Computer Vision.

[78]  Takeo Kanade,et al.  Shape and motion from image streams under orthography: a factorization method , 1992, International Journal of Computer Vision.

[79]  Larry H. Matthies,et al.  Visual odometry on the Mars Exploration Rovers , 2005, 2005 IEEE International Conference on Systems, Man and Cybernetics.

[80]  David Wettergreen,et al.  Dante II: Technical Description, Results, and Lessons Learned , 1999, Int. J. Robotics Res..

[81]  Donald Bernard Gennery,et al.  Modelling the environment of an exploring vehicle by means of stereo vision , 1980 .

[82]  Christopher G. Atkeson,et al.  Constructive Incremental Learning from Only Local Information , 1998, Neural Computation.

[83]  Wang Jinhua,et al.  Identification Modeling of a Small-Scale Unmanned Helicopter , 2009 .

[84]  Hans P. Moravec Obstacle avoidance and navigation in the real world by a seeing robot rover , 1980 .

[85]  M. G. Bekker Mechanics of Locomotion and Lunar Surface Vehicle Concepts , 1964 .

[86]  Takeo Kanade,et al.  A multiple-baseline stereo , 1991, Proceedings. 1991 IEEE Computer Society Conference on Computer Vision and Pattern Recognition.

[87]  Larry H. Matthies,et al.  Negative obstacle detection by thermal signature , 2003, Proceedings 2003 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS 2003) (Cat. No.03CH37453).

[88]  Takeo Kanade,et al.  Attitude control optimization for a small-scale unmanned helicopter , 2000 .

[89]  Bernard Mettler,et al.  System identification modeling of a small-scale unmanned rotorcraft for flight control design , 2002 .

[90]  Clark F. Olson,et al.  Optical landmark detection for spacecraft navigation , 2003 .

[91]  B. Hapke Bidirectional reflectance spectroscopy: 4. The extinction coefficient and the opposition effect , 1986 .

[92]  Larry H. Matthies,et al.  Error modeling in stereo navigation , 1986, IEEE J. Robotics Autom..

[93]  Masatoshi Okutomi,et al.  Precise Sub-Pixel Estimation on Area-Based Matching , 2001, ICCV.

[94]  William Whittaker,et al.  Exploring Mount Erebus by walking robot , 1993, Robotics Auton. Syst..

[95]  Stergios I. Roumeliotis,et al.  The Jet Propulsion Laboratory Autonomous Helicopter Testbed: A platform for planetary exploration technology research and development , 2006, J. Field Robotics.

[96]  Pietro Perona,et al.  Learning to predict slip for ground robots , 2006, Proceedings 2006 IEEE International Conference on Robotics and Automation, 2006. ICRA 2006..

[97]  Carlos Villalpando Acceleration of Stereo Correlation in Verilog , 2006 .