Curve cuspless reconstruction via sub-Riemannian geometry

We consider the problem of minimizing $\int_{0}^L \sqrt{\xi^2 +K^2(s)}\, ds $ for a planar curve having fixed initial and final positions and directions. The total length $L$ is free. Here $s$ is the variable of arclength parametrization, $K(s)$ is the curvature of the curve and $\xi>0$ a parameter. This problem comes from a model of geometry of vision due to Petitot, Citti and Sarti. We study existence of local and global minimizers for this problem. We prove that if for a certain choice of boundary conditions there is no global minimizer, then there is neither a local minimizer nor a geodesic. We finally give properties of the set of boundary conditions for which there exists a solution to the problem.

[1]  Francesco Rossi,et al.  Existence of planar curves minimizing length and curvature , 2009, 0906.5290.

[2]  R. Duits,et al.  Left-invariant parabolic evolutions on SE(2) and contour enhancement via invertible orientation scores. Part II: Non-linear left-invariant diffusions on invertible orientation scores , 2010 .

[3]  Y. Sachkov,et al.  Cut locus and optimal synthesis in the sub-Riemannian problem on the group of motions of a plane , 2011 .

[4]  A. Bellaïche The tangent space in sub-riemannian geometry , 1994 .

[5]  David Mumford,et al.  The 2.1-D sketch , 1990, [1990] Proceedings Third International Conference on Computer Vision.

[6]  D. Hubel,et al.  Receptive fields, binocular interaction and functional architecture in the cat's visual cortex , 1962, The Journal of physiology.

[7]  Scott D. Pauls,et al.  Minimal Surfaces in the Roto-Translation Group with Applications to a Neuro-Biological Image Completion Model , 2009, Journal of Mathematical Imaging and Vision.

[8]  Edmund Taylor Whittaker,et al.  A Course of Modern Analysis: An Introduction to the General Theory of Infinite Processes and of Analytic Functions; with an Account of the Principal Transcendental Functions , 1920, Nature.

[9]  Edmund Taylor Whittaker,et al.  A Course of Modern Analysis , 2021 .

[10]  J. Gauthier,et al.  Hypoelliptic diffusion and human vision: a semi-discrete new twist on the Petitot theory , 2013 .

[11]  W. Hoffman The visual cortex is a contact bundle , 1989 .

[12]  J. Petitot The neurogeometry of pinwheels as a sub-Riemannian contact structure , 2003, Journal of Physiology-Paris.

[13]  R. Montgomery A Tour of Subriemannian Geometries, Their Geodesics and Applications , 2006 .

[14]  A. Agrachev Exponential mappings for contact sub-Riemannian structures , 1996 .

[15]  Andrei A. Agrachev,et al.  Introduction to Riemannian and Sub-Riemannian geometry , 2012 .

[16]  Delfim F. M. Torres,et al.  Lipschitzian Regularity of Minimizers for Optimal Control Problems with Control-Affine Dynamics , 2000 .

[17]  A. Agrachev,et al.  Control Theory from the Geometric Viewpoint , 2004 .

[18]  Giovanna Citti,et al.  A Cortical Based Model of Perceptual Completion in the Roto-Translation Space , 2006, Journal of Mathematical Imaging and Vision.

[19]  R. Duits,et al.  Left-invariant parabolic evolutions on SE(2) and contour enhancement via invertible orientation scores. Part I: Linear left-invariant diffusion equations on SE(2) , 2010 .

[20]  Yuri L. Sachkov Conjugate and cut time in the sub-Riemannian problem on the group of motions of a plane , 2010 .

[21]  Francesco Rossi,et al.  PROJECTIVE REEDS-SHEPP CAR ON S 2 WITH QUADRATIC COST , 2008, 0805.4800.

[22]  Giovanna Citti,et al.  Image Completion Using a Diffusion Driven Mean Curvature Flowin A Sub-Riemannian Space , 2008, VISAPP.

[23]  M. Gromov Carnot-Carathéodory spaces seen from within , 1996 .

[24]  P. Lennie Receptive fields , 2003, Current Biology.

[25]  Remco Duits,et al.  Association Fields via Cuspless Sub-Riemannian Geodesics in SE(2) , 2013, Journal of Mathematical Imaging and Vision.

[26]  A. Agrachev,et al.  A. Agrachev COMPACTNESS FOR SUB-RIEMANNIAN LENGTH-MINIMIZERS AND SUBANALYTICITY , 1999 .

[27]  J. Petitot,et al.  Vers une neurogéométrie. Fibrations corticales, structures de contact et contours subjectifs modaux , 1999 .

[28]  Yu. L. Sachkov,et al.  Maxwell strata in sub-Riemannian problem on the group of motions of a plane , 2008, 0807.4731.

[29]  Andrey Sarychev,et al.  First- and Second-Order Integral Functionals of the Calculus of Variations which Exhibit the Lavrentiev Phenomenon , 1997 .

[30]  Discrete symmetries in the generalized Dido problem , 2006 .

[31]  L. Hörmander Hypoelliptic second order differential equations , 1967 .

[32]  Victor M. Becerra,et al.  Optimal control , 2008, Scholarpedia.

[33]  Jean-Paul Gauthier,et al.  Anthropomorphic Image Reconstruction via Hypoelliptic Diffusion , 2010, SIAM J. Control. Optim..