Sequential Nonlinear Filtering of Local Motion Cues by Global Motion Circuits

Many animals guide their movements using optic flow, the displacement of stationary objects across the retina caused by self-motion. How do animals selectively synthesize a global motion pattern from its local motion components? To what extent does this feature selectivity rely on circuit mechanisms versus dendritic processing? Here we used in vivo calcium imaging to identify pre- and postsynaptic mechanisms for processing local motion signals in global motion detection circuits in Drosophila. Lobula plate tangential cells (LPTCs) detect global motion by pooling input from local motion detectors, T4/T5 neurons. We show that T4/T5 neurons suppress responses to adjacent local motion signals whereas LPTC dendrites selectively amplify spatiotemporal sequences of local motion signals consistent with preferred global patterns. We propose that sequential nonlinear suppression and amplification operations allow optic flow circuitry to simultaneously prevent saturating responses to local signals while creating selectivity for global motion patterns critical to behavior.

[1]  Hausser Michael,et al.  One rule to grow them all: A general theory of neuronal branching and its practical application , 2010 .

[2]  P. Detwiler,et al.  A Dendrite-Autonomous Mechanism for Direction Selectivity in Retinal Starburst Amacrine Cells , 2007, PLoS biology.

[3]  F. Leiss,et al.  Characterization of dendritic spines in the Drosophila central nervous system , 2009, Developmental neurobiology.

[4]  Damon A. Clark,et al.  Defining the Computational Structure of the Motion Detector in Drosophila , 2011, Neuron.

[5]  K. Götz,et al.  Visual control of locomotion in the fruitfly Drosophila , 1973 .

[6]  Damon A. Clark,et al.  Processing properties of ON and OFF pathways for Drosophila motion detection , 2014, Nature.

[7]  Alexander Borst,et al.  Different receptive fields in axons and dendrites underlie robust coding in motion-sensitive neurons , 2009, Nature Neuroscience.

[8]  Mark A. Frye,et al.  Figure–ground discrimination behavior in Drosophila. II. Visual influences on head movement behavior , 2014, Journal of Experimental Biology.

[9]  Nicholas J. Priebe,et al.  Direction Selectivity of Excitation and Inhibition in Simple Cells of the Cat Primary Visual Cortex , 2005, Neuron.

[10]  A. Borst,et al.  Response Properties of Motion-Sensitive Visual Interneurons in the Lobula Plate of Drosophila melanogaster , 2008, Current Biology.

[11]  Matthew S. Creamer,et al.  Direct Measurement of Correlation Responses in Drosophila Elementary Motion Detectors Reveals Fast Timescale Tuning , 2016, Neuron.

[12]  Michael B. Reiser,et al.  Direct Observation of ON and OFF Pathways in the Drosophila Visual System , 2014, Current Biology.

[13]  Michael S. Lewicki,et al.  Efficient auditory coding , 2006, Nature.

[14]  Alexander Borst,et al.  Neural Circuit to Integrate Opposing Motions in the Visual Field , 2015, Cell.

[15]  Wei Wei,et al.  Cross-compartmental Modulation of Dendritic Signals for Retinal Direction Selectivity , 2017, Neuron.

[16]  Liqun Luo,et al.  Structure of the vertical and horizontal system neurons of the lobula plate in Drosophila , 2002, The Journal of comparative neurology.

[17]  Damon A. Clark,et al.  Modular Use of Peripheral Input Channels Tunes Motion-Detecting Circuitry , 2013, Neuron.

[18]  Michael J. Berry,et al.  Redundancy in the Population Code of the Retina , 2005, Neuron.

[19]  Michael Z. Lin,et al.  Subcellular Imaging of Voltage and Calcium Signals Reveals Neural Processing In Vivo , 2016, Cell.

[20]  R Hengstenberg,et al.  Dendritic structure and receptive-field organization of optic flow processing interneurons in the fly. , 1998, Journal of neurophysiology.

[21]  B Schnell,et al.  Processing of horizontal optic flow in three visual interneurons of the Drosophila brain. , 2010, Journal of neurophysiology.

[22]  G. Rubin,et al.  A directional tuning map of Drosophila elementary motion detectors , 2013, Nature.

[23]  Louis K. Scheffer,et al.  A visual motion detection circuit suggested by Drosophila connectomics , 2013, Nature.

[24]  M. Liberman,et al.  Generating Synchrony from the Asynchronous: Compensation for Cochlear Traveling Wave Delays by the Dendrites of Individual Brainstem Neurons , 2012, The Journal of Neuroscience.

[25]  Srinivas C. Turaga,et al.  Space-time wiring specificity supports direction selectivity in the retina , 2014, Nature.

[26]  Cheng Lyu,et al.  Quantitative Predictions Orchestrate Visual Signaling in Drosophila , 2017, Cell.

[27]  James P. Bohnslav,et al.  A faithful internal representation of walking movements in the Drosophila visual system , 2016, Nature Neuroscience.

[28]  A. Borst,et al.  A common directional tuning mechanism of Drosophila motion-sensing neurons in the ON and in the OFF pathway , 2017, eLife.

[29]  Yvette E. Fisher,et al.  Orientation Selectivity Sharpens Motion Detection in Drosophila , 2015, Neuron.

[30]  A. Borst,et al.  Neural networks in the cockpit of the fly , 2002, Journal of Comparative Physiology A.

[31]  A. Borst,et al.  Direction selectivity of blowfly motion-sensitive neurons is computed in a two-stage process. , 1990, Proceedings of the National Academy of Sciences of the United States of America.

[32]  A. Borst,et al.  Subcellular mapping of dendritic activity in optic flow processing neurons , 2014, Journal of Comparative Physiology A.

[33]  Mark A. Frye,et al.  Figure–ground discrimination behavior in Drosophila. I. Spatial organization of wing-steering responses , 2014, Journal of Experimental Biology.

[34]  T. Clandinin,et al.  Linear Summation Underlies Direction Selectivity in Drosophila , 2018, Neuron.

[35]  H. B. Barlow,et al.  Possible Principles Underlying the Transformations of Sensory Messages , 2012 .

[36]  Sensory matched filters , 2016, Current Biology.

[37]  Michael B. Reiser,et al.  Ultra-selective looming detection from radial motion opponency , 2017, Nature.

[38]  Michael S. Drews,et al.  The Temporal Tuning of the Drosophila Motion Detectors Is Determined by the Dynamics of Their Input Elements , 2017, Current Biology.

[39]  M. London,et al.  Dendritic computation. , 2005, Annual review of neuroscience.

[40]  Michael B. Reiser,et al.  Simple integration of fast excitation and offset, delayed inhibition computes directional selectivity in Drosophila , 2017, Nature Neuroscience.

[41]  Idan Segev,et al.  Non-uniform weighting of local motion inputs underlies dendritic computation in the fly visual system , 2018, Scientific Reports.

[42]  F. Attneave Some informational aspects of visual perception. , 1954, Psychological review.

[43]  Ben Poole,et al.  Direction Selectivity in Drosophila Emerges from Preferred-Direction Enhancement and Null-Direction Suppression , 2016, The Journal of Neuroscience.

[44]  K. Hausen The Lobula-Complex of the Fly: Structure, Function and Significance in Visual Behaviour , 1984 .

[45]  Maoz Shamir,et al.  Emerging principles of population coding: in search for the neural code , 2014, Current Opinion in Neurobiology.

[46]  J. Anthony Movshon,et al.  Dissociation of Neuronal and Psychophysical Responses to Local and Global Motion , 2011, Current Biology.

[47]  Werner Reichardt,et al.  Evaluation of optical motion information by movement detectors , 1987, Journal of Comparative Physiology A.

[48]  A. Pouget,et al.  Neural correlations, population coding and computation , 2006, Nature Reviews Neuroscience.

[49]  Michael B. Reiser,et al.  The Emergence of Directional Selectivity in the Visual Motion Pathway of Drosophila , 2017, Neuron.

[50]  Thomas R Clandinin,et al.  Elementary Motion Detection in Drosophila: Algorithms and Mechanisms. , 2018, Annual review of vision science.

[51]  D. Ferster,et al.  Linearity of summation of synaptic potentials underlying direction selectivity in simple cells of the cat visual cortex. , 1993, Science.

[52]  P. Detwiler,et al.  Directionally selective calcium signals in dendrites of starburst amacrine cells , 2002, Nature.

[53]  Bruce R. Blazar,et al.  Dendritic Discrimination of Temporal Input Sequences in Cortical Neurons , 2010 .

[54]  Alexander Borst,et al.  Complementary mechanisms create direction selectivity in the fly , 2016, eLife.

[55]  Aristides B. Arrenberg,et al.  Functional Architecture of an Optic Flow-Responsive Area that Drives Horizontal Eye Movements in Zebrafish , 2014, Neuron.

[56]  Patrick M. Lu,et al.  Neurons Forming Optic Glomeruli Compute Figure–Ground Discriminations in Drosophila , 2015, The Journal of Neuroscience.

[57]  Stefan R. Pulver,et al.  Ultra-sensitive fluorescent proteins for imaging neuronal activity , 2013, Nature.

[58]  Adam Bleckert,et al.  A Role for Synaptic Input Distribution in a Dendritic Computation of Motion Direction in the Retina , 2016, Neuron.

[59]  Alexander Borst,et al.  Visual Circuits for Direction Selectivity. , 2017, Annual review of neuroscience.

[60]  R. Wehner ‘Matched filters’ — neural models of the external world , 1987, Journal of Comparative Physiology A.

[61]  Marie P Suver,et al.  An Array of Descending Visual Interneurons Encoding Self-Motion in Drosophila , 2016, The Journal of Neuroscience.