Approximate Optimal Order Batch Sizes in a Parallel aisle Warehouse

The past warehousing literature dealing with order picking and batching assumes batch sizes are given. However, selecting a suitable batch size can significantly enhance the system performance. This paper is one of the earliest to search optimal batch sizes in a general parallel-aisle warehouse with stochastic order arrivals.We employ a sample path optimization and perturbation analysis algorithm to search the optimal batch size for a warehousing service provider facing a stochastic demand, and a central finite difference algorithm to search the optimal batch sizes from the perspectives of customers and total systems.We show the existence of optimal batch sizes, and find past researches underestimate the optimal batch size.

[1]  Paul Glasserman Perturbation Analysis of Production Networks , 1994 .

[2]  M. Fu,et al.  Efficient Design and Sensitivity Analysis of Control Charts Using Monte Carlo Simulation , 1999 .

[3]  Bruno Apolloni,et al.  Confidence intervals in the solution of stochastic integer linear programming problems , 1984, Ann. Oper. Res..

[4]  Y. Gong,et al.  The Multi-Location Transshipment Problem with Positive Replenishment Lead Times , 2006 .

[5]  M. B. M. de Koster,et al.  Routing orderpickers in a warehouse: a comparison between optimal and heuristic solutions , 1998 .

[6]  Loon Ching Tang,et al.  Travel time analysis for general item location assignment in a rectangular warehouse , 1999, Eur. J. Oper. Res..

[7]  Stephen P. Boyd,et al.  Convex Optimization , 2004, Algorithms and Theory of Computation Handbook.

[8]  John K. Jackman,et al.  Infinitesimal Perturbation Analysis: A Tool for Simulation , 1989 .

[9]  Michael C. Fu,et al.  Optimization for Simulation: Theory vs. Practice , 2002 .

[10]  Paul Glasserman,et al.  Gradient Estimation Via Perturbation Analysis , 1990 .

[11]  Gunter P. Sharp,et al.  Order batching procedures , 1992 .

[12]  Yolanda Carson,et al.  Simulation optimization: methods and applications , 1997, WSC '97.

[13]  Michael C. Fu,et al.  Sample Path Derivatives for (s, S) Inventory Systems , 1994, Oper. Res..

[14]  Kees Jan Roodbergen,et al.  Layout and routing methods for warehouses , 2001 .

[15]  A.J.R.M. Gademann,et al.  An order batching algorithm for wave picking in a parallel-aisle warehouse , 1996 .

[16]  M. B. M. de Koster,et al.  Efficient orderbatching methods in warehouses , 1999 .

[17]  Thomas L. Morin,et al.  Generalized Dynamic Programming for Stochastic Combinatorial Optimization , 1989, Oper. Res..

[18]  Xi-Ren Cao,et al.  Convergence properties of infinitesimal perturbation analysis , 1988 .

[19]  Dimitri P. Bertsekas,et al.  Nonlinear Programming , 1997 .

[20]  Marc Goetschalckx,et al.  CLASSIFICATION AND DESIGN OF ORDER PICKING , 1989 .

[21]  Yu-Chi Ho,et al.  A gradient technique for general buffer storage design in a production line , 1979 .

[22]  Kees Jan Roodbergen,et al.  Design and control of warehouse order picking: A literature review , 2006, Eur. J. Oper. Res..

[23]  Michael C. Fu,et al.  Feature Article: Optimization for simulation: Theory vs. Practice , 2002, INFORMS J. Comput..

[24]  H. Robbins A Stochastic Approximation Method , 1951 .

[25]  NOUD GADEMANN,et al.  Order batching to minimize total travel time in a parallel-aisle warehouse , 2005 .

[26]  Kees Jan Roodbergen,et al.  Routing methods for warehouses with multiple cross aisles , 2001 .

[27]  Tho Le-Duc,et al.  Travel time estimation and order batching in a 2-block warehouse , 2007, Eur. J. Oper. Res..