Micro-Scale Mobile Robotics

The field of microrobotics has seen tremendous advances in recent years. The principles governing the design of such submillimeter scale robots rely on an understanding of microscale physics, fabrication, and novel control strategies. This monograph provides a tutorial on the relevant physical phenomena governing the operation and design of microrobots, as well as a survey of existing approaches to microrobot design and control. It also provides a detailed practical overview of actuation and control methods that are commonly used to remotely power these designs, as well as a discussion of possible future research directions. Potential high-impact applications of untethered microrobots such as minimally invasive diagnosis and treatment inside the human body, biological studies or bioengineering, microfluidics, desktop micromanufacturing, and mobile sensor networks for environmental and health monitoring are reported.

[1]  Metin Sitti,et al.  Microscale and nanoscale robotics systems [Grand Challenges of Robotics] , 2007, IEEE Robotics & Automation Magazine.

[2]  Metin Sitti,et al.  Remotely addressable magnetic composite micropumps , 2012 .

[3]  Metin Sitti,et al.  Magnetic hysteresis for multi-state addressable magnetic microrobotic control , 2012, 2012 IEEE/RSJ International Conference on Intelligent Robots and Systems.

[4]  Salvador Pané,et al.  Toward targeted retinal drug delivery with wireless magnetic microrobots , 2008, 2008 IEEE/RSJ International Conference on Intelligent Robots and Systems.

[5]  J. M. Bush,et al.  The hydrodynamics of water strider locomotion , 2003, Nature.

[6]  David L. Kirchman,et al.  Degradation of Adsorbed Protein by Attached Bacteria in Relationship to Surface Hydrophobicity , 1990, Applied and environmental microbiology.

[7]  Wei-Min Shen,et al.  Rolling and Climbing by the Multifunctional SuperBot Reconfigurable Robotic System , 2008 .

[8]  Michel Wautelet,et al.  Scaling laws in the macro-, micro- and nanoworlds , 2001 .

[9]  John A. Williams,et al.  Friction and wear of rotating pivots in MEMS and other small scale devices , 2001 .

[10]  K. Pullen,et al.  Axial-flow microturbine with electromagnetic generator: design, CFD simulation, and prototype demonstration , 2004, 17th IEEE International Conference on Micro Electro Mechanical Systems. Maastricht MEMS 2004 Technical Digest.

[11]  C. Toumazou,et al.  Biocompatible encapsulation of CMOS based chemical sensors , 2009, 2009 IEEE Sensors.

[12]  Shadrach Roundy,et al.  On the Effectiveness of Vibration-based Energy Harvesting , 2005 .

[13]  B. Behkam,et al.  Bacterial flagella-based propulsion and on/off motion control of microscale objects , 2007 .

[14]  O. Schmidt,et al.  Catalytic microtubular jet engines self-propelled by accumulated gas bubbles. , 2009, Small.

[15]  Metin Sitti,et al.  Effect of quantity and configuration of attached bacteria on bacterial propulsion of microbeads , 2008 .

[16]  S. Beeby,et al.  Energy harvesting vibration sources for microsystems applications , 2006 .

[17]  Metin Sitti,et al.  Two-Dimensional Autonomous Microparticle Manipulation Strategies for Magnetic Microrobots in Fluidic Environments , 2012, IEEE Transactions on Robotics.

[18]  K. Schmidt-Nielsen,et al.  Scaling, why is animal size so important? , 1984 .

[19]  Fumihito Arai,et al.  Micro manipulation based on micro physics-strategy based on attractive force reduction and stress measurement , 1995, Proceedings 1995 IEEE/RSJ International Conference on Intelligent Robots and Systems. Human Robot Interaction and Cooperative Robots.

[20]  W. A. Miller,et al.  Surface free energies of solid metals: Estimation from liquid surface tension measurements , 1977 .

[21]  Marcus L. Roper,et al.  On the dynamics of magnetically driven elastic filaments , 2006, Journal of Fluid Mechanics.

[22]  Russell M. Taylor,et al.  Thermally actuated untethered impact-driven locomotive microdevices , 2006 .

[23]  Woosoon Yim,et al.  Wireless actuation and control of ionic polymer–metal composite actuator using a microwave link , 2012 .

[24]  G. G. Karady,et al.  Comparison of calibration systems for magnetic field measurement equipment , 1994 .

[25]  Thierry Czerwiec,et al.  Low-temperature plasma-assisted nitriding , 2000 .

[26]  K. I. Arai,et al.  Swimming micro-machine driven by magnetic torque , 2001 .

[27]  Hod Lipson,et al.  Dynamically programmable fluidic assembly , 2008 .

[28]  A. Adamson Physical chemistry of surfaces , 1960 .

[29]  G. Reyne,et al.  Magnetic micro-actuators and systems (MAGMAS) , 2003 .

[30]  H. Berg,et al.  Moving fluid with bacterial carpets. , 2004, Biophysical journal.

[31]  Metin Sitti,et al.  Biologically Inspired Miniature Water Strider Robot , 2005, Robotics: Science and Systems.

[32]  Lei Wang,et al.  Vibration energy harvesting by magnetostrictive material , 2008 .

[33]  Metin Sitti,et al.  Surface-Tension-Driven Biologically Inspired Water Strider Robots: Theory and Experiments , 2007, IEEE Transactions on Robotics.

[34]  T. Powers,et al.  The hydrodynamics of swimming microorganisms , 2008, 0812.2887.

[35]  P. Fischer,et al.  Controlled propulsion of artificial magnetic nanostructured propellers. , 2009, Nano letters.

[36]  Hsueh-Chia Chang,et al.  Electrokinetically-Driven Microfluidics and Nanofluidics , 2009 .

[37]  Stephane Regnier,et al.  Analysis of forces for micromanipulations in dry and liquid media , 2006 .

[38]  Metin Sitti,et al.  Control of Multiple Heterogeneous Magnetic Microrobots in Two Dimensions on Nonspecialized Surfaces , 2012, IEEE Transactions on Robotics.

[39]  Ronald S. Fearing,et al.  Survey of sticking effects for micro parts handling , 1995, Proceedings 1995 IEEE/RSJ International Conference on Intelligent Robots and Systems. Human Robot Interaction and Cooperative Robots.

[40]  D. H. Kaelble,et al.  A surface energy analysis of bioadhesion , 1977 .

[41]  Ryan B. Wicker,et al.  Multi-material microstereolithography , 2010 .

[42]  Jeffrey Duryea,et al.  Patient repositioning reproducibility of joint space width measurements on hand radiographs , 2011, Arthritis care & research.

[43]  Craig D. McGray,et al.  Mobile microrobot characterization through performance-based competitions , 2009, PerMIS.

[44]  Sylvain Martel,et al.  Method of propulsion of a ferromagnetic core in the cardiovascular system through magnetic gradients generated by an MRI system , 2006, IEEE Transactions on Biomedical Engineering.

[45]  S. K. Rhee,et al.  Surface energies of silicate glasses calculated from their wettability data , 1977 .

[46]  Shih-Kang Fan,et al.  Portable digital microfluidics platform with active but disposable Lab-On-Chip , 2004, 17th IEEE International Conference on Micro Electro Mechanical Systems. Maastricht MEMS 2004 Technical Digest.

[47]  Metin Sitti,et al.  Modeling of stochastic motion of bacteria propelled spherical microbeads , 2011 .

[48]  Cazabat,et al.  Experiments on wetting on the scale of nanometers: Influence of the surface energy. , 1990, Physical review letters.

[49]  Vijay Kumar,et al.  Modeling, control and experimental characterization of microbiorobots , 2011, Int. J. Robotics Res..

[50]  Metin Sitti,et al.  Micro-manipulation using rotational fluid flows induced by remote magnetic micro-manipulators , 2012 .

[51]  M. Burrows,et al.  Biomechanics of jumping in the flea , 2011, Journal of Experimental Biology.

[52]  Dong-Woo Cho,et al.  Development of 3D PPF/DEF scaffolds using micro-stereolithography and surface modification , 2009, Journal of materials science. Materials in medicine.

[53]  Jake J. Abbott,et al.  Velocity Control with Gravity Compensation for Magnetic Helical Microswimmers , 2011, Adv. Robotics.

[54]  H. Hashimoto,et al.  Controlled pushing of nanoparticles: modeling and experiments , 2000 .

[55]  Stella W. Pang,et al.  Three-dimensional SU-8 structures by reversal UV imprint , 2006 .

[56]  R. Goldfarb,et al.  Units for magnetic properties , 1985 .

[57]  Li Zhang,et al.  Artificial bacterial flagella for micromanipulation. , 2010, Lab on a chip.

[58]  G. Whitesides,et al.  Microoxen: microorganisms to move microscale loads. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[59]  K. Arai,et al.  Micro swimming mechanisms propelled by external magnetic fields , 1996 .

[60]  S. Erni,et al.  Three-Dimensional Magnetic Manipulation of Micro- and Nanostructures for Applications in Life Sciences , 2013, IEEE Transactions on Magnetics.

[61]  Vijay Kumar,et al.  Wireless manipulation of single cells using magnetic microtransporters , 2011, 2011 IEEE International Conference on Robotics and Automation.

[62]  Shuxiang Guo,et al.  Fish-like underwater microrobot with multi DOF , 2001, MHS2001. Proceedings of 2001 International Symposium on Micromechatronics and Human Science (Cat. No.01TH8583).

[63]  Toshikazu Nishida,et al.  A MEMS acoustic energy harvester , 2006 .

[64]  M. Sitti,et al.  Chemotactic steering of bacteria propelled microbeads , 2012, Biomedical Microdevices.

[65]  M. Fink,et al.  Assessment of the mechanical properties of the musculoskeletal system using 2-D and 3-D very high frame rate ultrasound , 2008, IEEE Transactions on Ultrasonics, Ferroelectrics and Frequency Control.

[66]  Douglas A. Olsen,et al.  The Critical Surface Tension of Glass , 1964 .

[67]  Seth Copen Goldstein,et al.  Programmable Matter , 2005, Computer.

[68]  Antoine Ferreira,et al.  Adaptive backstepping and MEMS force sensor for an MRI-guided microrobot in the vasculature , 2011, 2011 IEEE International Conference on Robotics and Automation.

[69]  Fumihito Arai,et al.  High-Speed Magnetic Microrobot Actuation in a Microfluidic Chip by a Fine V-Groove Surface , 2013, IEEE Transactions on Robotics.

[70]  Reifenberger,et al.  Identification of electrostatic and van der Waals interaction forces between a micrometer-size sphere and a flat substrate. , 1996, Physical review. B, Condensed matter.

[71]  M. J. Kim,et al.  Control of microfabricated structures powered by flagellated bacteria using phototaxis , 2007 .

[72]  Peter Hess,et al.  Laser diagnostics of mechanical and elastic properties of silicon and carbon films , 1996 .

[73]  Soichiro Tottori,et al.  Magnetic helical micromachines. , 2013, Chemistry.

[74]  R. Bjork,et al.  Comparison of adjustable permanent magnetic field sources , 2010 .

[75]  Sylvain Martel,et al.  MRI-based Medical Nanorobotic Platform for the Control of Magnetic Nanoparticles and Flagellated Bacteria for Target Interventions in Human Capillaries , 2009, Int. J. Robotics Res..

[76]  Sylvain Martel,et al.  Using a swarm of self-propelled natural microrobots in the form of flagellated bacteria to perform complex micro-assembly tasks , 2010, 2010 IEEE International Conference on Robotics and Automation.

[77]  R R Price,et al.  The AAPM/RSNA physics tutorial for residents. MR imaging safety considerations. Radiological Society of North America. , 1999, Radiographics : a review publication of the Radiological Society of North America, Inc.

[78]  Li Zhang,et al.  Selective trapping and manipulation of microscale objects using mobile microvortices. , 2012, Nano letters.

[79]  J. Happel,et al.  Low Reynolds number hydrodynamics , 1965 .

[80]  Maciej A. Zwieniecki,et al.  Transporting water to the tops of trees , 2008 .

[81]  A Sawant,et al.  Fabrication of high aspect-ratio polymer microstructures for large-area electronic portal x-ray imagers. , 2007, Sensors and actuators. A, Physical.

[82]  Antoine Ferreira,et al.  Endovascular navigation of a ferromagnetic microrobot using MRI-based predictive control , 2010, 2010 IEEE/RSJ International Conference on Intelligent Robots and Systems.

[83]  Jake J. Abbott,et al.  How Should Microrobots Swim? , 2009 .

[84]  Jake J. Abbott,et al.  Robotics in the Small, Part I: Microbotics , 2007, IEEE Robotics & Automation Magazine.

[85]  R. Stark,et al.  Stability of the hydrophilic behavior of oxygen plasma activated SU-8 , 2007 .

[86]  Anna Mathesz,et al.  Light sailboats: Laser driven autonomous microrobots , 2012, 1211.2653.

[87]  Ivan Penskiy,et al.  Toward fluidic microrobots using electrowetting , 2012, 2012 IEEE International Conference on Robotics and Automation.

[88]  H. Skriver,et al.  Surface energy and work function of elemental metals. , 1992, Physical review. B, Condensed matter.

[89]  Barjor Gimi,et al.  MRI of regular‐shaped cell‐encapsulating polyhedral microcontainers , 2007, Magnetic resonance in medicine.

[90]  A. L. Demirel,et al.  The effect of nanoparticles on the surface hydrophobicity of polystyrene , 2008 .

[91]  I. Shimoyama,et al.  Selective drive of electrostatic actuators using remote inductive powering , 2001, Technical Digest. MEMS 2001. 14th IEEE International Conference on Micro Electro Mechanical Systems (Cat. No.01CH37090).

[92]  Murali Krishna Ghatkesar,et al.  Micromechanical mass sensors for biomolecular detection in a physiological environment. , 2005, Physical review. E, Statistical, nonlinear, and soft matter physics.

[93]  Doyoung Byun,et al.  A comparison of vision-based tracking schemes for control of microbiorobots , 2010 .

[94]  B.R. Donald,et al.  An untethered, electrostatic, globally controllable MEMS micro-robot , 2006, Journal of Microelectromechanical Systems.

[95]  David H. Gracias,et al.  Three-dimensional surface current loops in terahertz responsive microarrays , 2010 .

[96]  R Di Leonardo,et al.  Bacterial ratchet motors , 2009, Proceedings of the National Academy of Sciences.

[97]  Lee E. Weiss,et al.  Micromilling of microbarbs for medical implants , 2008 .

[98]  M. Soljačić,et al.  Wireless Power Transfer via Strongly Coupled Magnetic Resonances , 2007, Science.

[99]  J. R. Craig,et al.  Optimum Spacing of Square and Circular Coil Pairs , 1968 .

[100]  E. Purcell Life at Low Reynolds Number , 2008 .

[101]  Wenqi Hu,et al.  Micro-assembly using optically controlled bubble microrobots , 2011 .

[102]  Min Jun Kim,et al.  Three-dimensional control of Tetrahymena pyriformis using artificial magnetotaxis , 2012 .

[103]  Sergej Fatikow,et al.  Evaluation of a MRI based propulsion/control system aiming at targeted micro/nano-capsule therapeutics , 2012, 2012 IEEE/RSJ International Conference on Intelligent Robots and Systems.

[104]  Metin Sitti,et al.  Design Methodology for Biomimetic Propulsion of Miniature Swimming Robots , 2004 .

[105]  Kevin Y. Ma,et al.  Controlled Flight of a Biologically Inspired, Insect-Scale Robot , 2013, Science.

[106]  Metin Sitti,et al.  Two-dimensional magnetic micro-module reconfigurations based on inter-modular interactions , 2013, Int. J. Robotics Res..

[107]  R. B. Yates,et al.  Development of an electromagnetic micro-generator , 2001 .

[108]  Masaki Nakano,et al.  Wireless micro swimming machine with magnetic thin film , 2004 .

[109]  Mamoru Mitsuishi,et al.  Selective control method for multiple magnetic helical microrobots , 2011 .

[110]  Metin Sitti,et al.  Miniature devices: Voyage of the microrobots , 2009, Nature.

[111]  J. Schenck Safety of Strong, Static Magnetic Fields , 2000, Journal of magnetic resonance imaging : JMRI.

[112]  J. Israelachvili Intermolecular and surface forces , 1985 .

[113]  Lixin Dong,et al.  Artificial bacterial flagella: Fabrication and magnetic control , 2009 .

[114]  J. J. Abbott,et al.  Optimal Permanent-Magnet Geometries for Dipole Field Approximation , 2013, IEEE transactions on magnetics.

[115]  Metin Sitti,et al.  Design and manufacturing of a controllable miniature flapping wing robotic platform , 2012, Int. J. Robotics Res..

[116]  Ann Marie Sastry,et al.  Powering MEMS portable devices—a review of non-regenerative and regenerative power supply systems with special emphasis on piezoelectric energy harvesting systems , 2008 .

[117]  Metin Sitti,et al.  Microparticle manipulation using multiple untethered magnetic micro-robots on an electrostatic surface , 2009, 2009 IEEE/RSJ International Conference on Intelligent Robots and Systems.

[118]  R. Clift,et al.  Bubbles, Drops, and Particles , 1978 .

[119]  Metin Sitti,et al.  Rolling and Spinning Friction Characterization of Fine Particles Using Lateral Force Microscopy Based Contact Pushing , 2008 .

[120]  Metin Sitti,et al.  Biomimetic propulsion for a swimming surgical micro-robot , 2003, Proceedings 2003 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS 2003) (Cat. No.03CH37453).

[121]  Paolo Dario,et al.  Design and development of a soft magnetically-propelled swimming microrobot , 2011, 2011 IEEE International Conference on Robotics and Automation.

[122]  Radioisotope Powered Electrostatic Microactuators and Electronics , 2007, TRANSDUCERS 2007 - 2007 International Solid-State Sensors, Actuators and Microsystems Conference.

[123]  M. R. Edwards,et al.  Near and far-wall effects on the three-dimensional motion of bacteria-driven microbeads , 2013 .

[124]  O. Ergeneman,et al.  Functional polypyrrole coatings for wirelessly controlled magnetic microrobots , 2013, 2013 IEEE Point-of-Care Healthcare Technologies (PHT).

[125]  Min Tae Kim,et al.  Influence of substrates on the elastic reaction of films for the microindentation tests , 1996 .

[126]  Raymond E. Goldstein,et al.  FLEXIVE AND PROPULSIVE DYNAMICS OF ELASTICA AT LOW REYNOLDS NUMBER , 1997, cond-mat/9707346.

[127]  Anantha Chandrakasan,et al.  Vibration-to-electric energy conversion , 1999, Proceedings. 1999 International Symposium on Low Power Electronics and Design (Cat. No.99TH8477).

[128]  Metin Sitti,et al.  Assembly and disassembly of magnetic mobile micro-robots towards deterministic 2-D reconfigurable micro-systems , 2011, 2011 IEEE International Conference on Robotics and Automation.

[129]  Metin Sitti,et al.  Control methodologies for a heterogeneous group of untethered magnetic micro-robots , 2011, Int. J. Robotics Res..

[130]  D. Maugis Adhesion of spheres : the JKR-DMT transition using a dugdale model , 1992 .

[131]  M. Urbakh,et al.  A model of electrowetting, reversed electrowetting, and contact angle saturation. , 2011, Langmuir : the ACS journal of surfaces and colloids.

[132]  S. Senturia Microsystem Design , 2000 .

[133]  Uwe Erb,et al.  Saturation Magnetization of Porosity-free Nanocrystalline Cobalt , 1998 .

[134]  Christos Bergeles,et al.  Characterizing the swimming properties of artificial bacterial flagella. , 2009, Nano letters.

[135]  A. Lal,et al.  Self-reciprocating radioisotope-powered cantilever , 2002 .

[136]  Jake J. Abbott,et al.  Control of untethered magnetically actuated tools using a rotating permanent magnet in any position , 2012, 2012 IEEE International Conference on Robotics and Automation.

[137]  Li Zhang,et al.  Targeted cargo delivery using a rotating nickel nanowire. , 2012, Nanomedicine : nanotechnology, biology, and medicine.

[138]  Aaron P. Gerratt,et al.  SOI/elastomer process for energy storage and rapid release , 2010 .

[139]  J. Visser On Hamaker constants: A comparison between Hamaker constants and Lifshitz-van der Waals constants , 1972 .

[140]  David G. Lowe,et al.  Distinctive Image Features from Scale-Invariant Keypoints , 2004, International Journal of Computer Vision.

[141]  Craig A. Grimes,et al.  A wireless magnetoelastic micro-sensor array for simultaneous measurement of temperature and pressure , 2001 .

[142]  Andrew D. Wiles,et al.  Accuracy assessment protocols for elektromagnetic tracking systems , 2003, CARS.

[143]  C D Onal,et al.  Automated 2-D Nanoparticle Manipulation Using Atomic Force Microscopy , 2011, IEEE Transactions on Nanotechnology.

[144]  Ioannis K. Kaliakatsos,et al.  Microrobots for minimally invasive medicine. , 2010, Annual review of biomedical engineering.

[145]  C. Graham,et al.  Introduction to Magnetic Materials , 1972 .

[146]  Eiichi Yoshida,et al.  Micro Self-reconfigurable Modular Robot Using Shape Memory Alloy , 2001, J. Robotics Mechatronics.

[147]  Metin Sitti,et al.  Teleoperated touch feedback from the surfaces at the nanoscale: modeling and experiments , 2003 .

[148]  Eric M. Yeatman,et al.  Advances In Power Sources For Wireless Sensor Nodes , 2004 .

[149]  Fumihito Arai,et al.  On-chip manipulation and sensing of microorganisms by magnetically driven microtools with a force sensing structure , 2012, 2012 IEEE International Conference on Robotics and Automation.

[150]  D. Stewart Finite-dimensional contact mechanics , 2001, Philosophical Transactions of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences.

[151]  Craig D. McGray,et al.  Power delivery and locomotion of untethered microactuators , 2003 .

[152]  D. Cheng Field and wave electromagnetics , 1983 .

[153]  Micky Rakotondrabe,et al.  First experiments on MagPieR: A planar wireless magnetic and piezoelectric microrobot , 2011, 2011 IEEE International Conference on Robotics and Automation.

[154]  Bradley J. Nelson,et al.  Guidance of magnetic intraocular microrobots by active defocused tracking , 2004, 2004 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS) (IEEE Cat. No.04CH37566).

[155]  M. Sitti,et al.  Multiple magnetic microrobot control using electrostatic anchoring , 2009 .

[156]  Robert J. Wood,et al.  Monolithic fabrication of millimeter-scale machines , 2012 .

[157]  David G. Lowe,et al.  Object recognition from local scale-invariant features , 1999, Proceedings of the Seventh IEEE International Conference on Computer Vision.

[158]  C Van Hoof,et al.  Self-assembly from milli- to nanoscales: methods and applications , 2009, Journal of micromechanics and microengineering : structures, devices, and systems.

[159]  Salvador Pané,et al.  A wireless acoustic emitter for passive localization in liquids , 2009, 2009 IEEE International Conference on Robotics and Automation.

[160]  Eric H. Maslen,et al.  Optimal realization of arbitrary forces in a magnetic stereotaxis system , 1996 .

[161]  M.B. Khamesee,et al.  Design and Implementation of a Micromanipulation System Using a Magnetically Levitated MEMS Robot , 2009, IEEE/ASME Transactions on Mechatronics.

[162]  B.R. Donald,et al.  Planar Microassembly by Parallel Actuation of MEMS Microrobots , 2008, Journal of Microelectromechanical Systems.

[163]  S. Martel,et al.  Automatic navigation of an untethered device in the artery of a living animal using a conventional clinical magnetic resonance imaging system , 2007 .

[164]  S. Martel,et al.  Controlled manipulation and actuation of micro-objects with magnetotactic bacteria , 2006 .

[165]  John W. Roberts,et al.  Three-dimensional fluorescent particle tracking at micron-scale using a single camera , 2005 .

[166]  S. Martel,et al.  MRI visualization of a single 15 µm navigable imaging agent and future microrobot , 2010, 2010 Annual International Conference of the IEEE Engineering in Medicine and Biology.

[167]  Dominic R. Frutiger,et al.  Small, Fast, and Under Control: Wireless Resonant Magnetic Micro-agents , 2010, Int. J. Robotics Res..

[168]  Koji Ikuta,et al.  Magnetic micro actuator with neutral buoyancy and 3D fabrication of cell size magnetized structure , 2012, 2012 IEEE International Conference on Robotics and Automation.

[169]  Pierre E. Dupont,et al.  Motion planning for multiple millimeter-scale magnetic capsules in a fluid environment , 2012, 2012 IEEE International Conference on Robotics and Automation.

[170]  Hod Lipson,et al.  Hydrodynamically driven docking of blocks for 3D fluidic assembly , 2010 .

[171]  Metin Sitti,et al.  Characterization of bacterial actuation of micro-objects , 2009, 2009 IEEE International Conference on Robotics and Automation.

[172]  Alexey Snezhko,et al.  Magnetic manipulation of self-assembled colloidal asters. , 2011, Nature materials.

[173]  H Hinghofer-Szalkay,et al.  Continuous monitoring of blood volume changes in humans. , 1987, Journal of applied physiology.

[174]  Metin Sitti,et al.  Two-Dimensional Contact and Noncontact Micromanipulation in Liquid Using an Untethered Mobile Magnetic Microrobot , 2009, IEEE Transactions on Robotics.

[175]  Sylvain Martel,et al.  In vivo validation of a propulsion method for untethered medical microrobots using a clinical magnetic resonance imaging system , 2007, 2007 IEEE/RSJ International Conference on Intelligent Robots and Systems.

[176]  Xi Chen,et al.  A magnetic thin film microrobot with two operating modes , 2011, 2011 IEEE International Conference on Robotics and Automation.

[177]  Philippe Renaud,et al.  Microstereolithography: concepts and applications , 2001, ETFA 2001. 8th International Conference on Emerging Technologies and Factory Automation. Proceedings (Cat. No.01TH8597).

[178]  Jake J. Abbott,et al.  Modeling Magnetic Torque and Force for Controlled Manipulation of Soft-Magnetic Bodies , 2007, IEEE Transactions on Robotics.

[179]  M. Mun,et al.  Improved biocompatibility of parylene‐C films prepared by chemical vapor deposition and the subsequent plasma treatment , 2009 .

[180]  Marcus L. Roper,et al.  Microscopic artificial swimmers , 2005, Nature.

[181]  P A Valberg,et al.  Magnetic particle motions within living cells. Physical theory and techniques. , 1987, Biophysical journal.

[182]  Max T. Hou,et al.  Development of rolling magnetic microrobots , 2010 .

[183]  Rémy Braive,et al.  Electro-osmotic propulsion of helical nanobelt swimmers , 2011, Int. J. Robotics Res..

[184]  P. Dario,et al.  From "macro" to "micro" manipulation: models and experiments , 2004, IEEE/ASME Transactions on Mechatronics.

[185]  N. Shinohara,et al.  Power without wires , 2011, IEEE Microwave Magazine.

[186]  Bradley J. Nelson,et al.  Visually Servoing Magnetic Intraocular Microdevices , 2012, IEEE Transactions on Robotics.

[187]  Metin Sitti,et al.  Independent control of multiple magnetic microrobots in three dimensions , 2013, Int. J. Robotics Res..

[188]  Bruce Randall Donald,et al.  Turning-rate Selective Control : A New Method for Independent Control of Stress-engineered MEMS Microrobots , 2012, Robotics: Science and Systems.

[189]  C. Lowe,et al.  A simulation study of the dynamics of a driven filament in an Aristotelian fluid. , 2002, Journal of theoretical biology.

[190]  Metin Sitti,et al.  Modeling and Experimental Characterization of an Untethered Magnetic Micro-Robot , 2009, Int. J. Robotics Res..

[191]  S. Webb The Physics of Medical Imaging , 1990 .

[192]  Ron Pelrine,et al.  Diamagnetically levitated robots: An approach to massively parallel robotic systems with unusual motion properties , 2012, 2012 IEEE International Conference on Robotics and Automation.

[193]  Jake J. Abbott,et al.  Tracking intraocular microdevices based on colorspace evaluation and statistical color/shape information , 2009, 2009 IEEE International Conference on Robotics and Automation.

[194]  B. R. Munson Fundamentals of fluid mechanics / Bruce R. Mucnson, Donald F. Young, Theodore H. Okiishi , 2002 .

[195]  Li Zhang,et al.  Bio-inspired magnetic swimming microrobots for biomedical applications. , 2013, Nanoscale.

[196]  Patrick W Serruys,et al.  Guidewire navigation in coronary artery stenoses using a novel magnetic navigation system: First clinical experience , 2006, Catheterization and cardiovascular interventions : official journal of the Society for Cardiac Angiography & Interventions.

[197]  E. Smela,et al.  Microfabricating conjugated polymer actuators. , 2000, Science.

[198]  Bruce Randall Donald,et al.  Programmable Force Fields for Distributed Manipulation, with Applications to MEMS Actuator Arrays and Vibratory Parts Feeders , 1999, Int. J. Robotics Res..

[199]  K.S.J. Pister,et al.  Robot leg motion in a planarized-SOI, two-layer poly-Si process , 2005, Journal of Microelectromechanical Systems.

[200]  B. Nelson,et al.  Quantifying growth mechanics of living, growing plant cells in situ using microbotics , 2011 .

[201]  S. Earnshaw On the Nature of the Molecular Forces which Regulate the Constitution of the Luminiferous Ether , .

[202]  G. Whitesides,et al.  Soft Lithography. , 1998, Angewandte Chemie.

[203]  Bradley J. Nelson,et al.  Modeling and Control of Untethered Biomicrorobots in a Fluidic Environment Using Electromagnetic Fields , 2006, Int. J. Robotics Res..

[204]  R. G. Cox,et al.  Slow viscous motion of a sphere parallel to a plane wall—I Motion through a quiescent fluid , 1967 .

[205]  G. Taylor Analysis of the swimming of microscopic organisms , 1951, Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences.

[206]  R. Fishman Cerebrospinal Fluid in Diseases of the Nervous System , 1992 .

[207]  Krzysztof K. Krawczyk,et al.  Magnetic Helical Micromachines: Fabrication, Controlled Swimming, and Cargo Transport , 2012, Advanced materials.

[208]  James W. Stevens Optimized Thermal Design of Small ΔT Thermoelectric Generators , 1999 .

[209]  Metin Sitti,et al.  Rotating magnetic micro-robots for versatile non-contact fluidic manipulation of micro-objects , 2011, 2011 IEEE/RSJ International Conference on Intelligent Robots and Systems.

[210]  P. Wells Current status and future technical advances of ultrasonic imaging , 2000, IEEE Engineering in Medicine and Biology Magazine.

[211]  Jake J. Abbott,et al.  Wireless control of magnetic helical microrobots using a rotating-permanent-magnet manipulator , 2010, 2010 IEEE International Conference on Robotics and Automation.

[212]  A. Herr,et al.  New Determinations of the Saturation Magnetization of Nickel and Iron , 1968 .

[213]  Jake J. Abbott,et al.  Modeling magnetic torque and force for controlled manipulation of soft-magnetic bodies , 2007 .

[214]  Daniela Rus,et al.  Robot pebbles: One centimeter modules for programmable matter through self-disassembly , 2010, 2010 IEEE International Conference on Robotics and Automation.

[215]  Nobuaki Kawahara,et al.  Development of in‐pipe microrobot using microwave energy transmission , 2001 .

[216]  Gregory S. Chirikjian,et al.  Modular Self-Reconfigurable Robot Systems , 2007 .

[217]  Wenqi Hu,et al.  Hydrogel microrobots actuated by optically generated vapour bubbles. , 2012, Lab on a chip.

[218]  Cris Kuhlemeier,et al.  Cellular Force Microscopy for in Vivo Measurements of Plant Tissue Mechanics1[W][OA] , 2012, Plant Physiology.

[219]  D W McRobbie,et al.  Occupational exposure in MRI. , 2012, The British journal of radiology.

[220]  Min Jun Kim,et al.  Use of bacterial carpets to enhance mixing in microfluidic systems , 2007 .

[221]  M. Troyon,et al.  General Equations Describing Elastic Indentation Depth and Normal Contact Stiffness versus Load. , 2000, Journal of colloid and interface science.

[222]  David H Gracias,et al.  Hierarchical self-assembly of complex polyhedral microcontainers. , 2009, Journal of micromechanics and microengineering : structures, devices, and systems.

[223]  P.-A. Besse,et al.  Tracking system with five degrees of freedom using a 2D-array of Hall sensors and a permanent magnet , 2001 .

[224]  Joseph A. Paradiso,et al.  Parasitic power harvesting in shoes , 1998, Digest of Papers. Second International Symposium on Wearable Computers (Cat. No.98EX215).

[225]  Juho Pokki,et al.  In Vitro Oxygen Sensing Using Intraocular Microrobots , 2012, IEEE Transactions on Biomedical Engineering.

[226]  Salvador Pané,et al.  Polymer-based Wireless Resonant Magnetic microrobots , 2012, 2012 IEEE International Conference on Robotics and Automation.

[227]  William C. Brown,et al.  The History of Power Transmission by Radio Waves , 1984 .

[228]  David Schneider Wireless power at a distance is still far away [Electrons Unplugged] , 2010, IEEE Spectrum.

[229]  F. H. Garner,et al.  Chemical Engineering , 1955, Nature.

[230]  Jonathan Black,et al.  Handbook of Biomaterial Properties , 1998, Springer US.

[231]  Andrea Prosperetti,et al.  Wall effects on a rotating sphere , 2010, Journal of Fluid Mechanics.