A review on electroactive polymers development for aerospace applications

Newfangled smart materials have inspired the researchers to look for more efficient materials that can respond to specific stimuli and retain the original shape. Electroactive polymers are such materials which are capable of sensing and real-time actuation. Various electroactive polymers are excellent candidates due to high strain rate, fast response, reliability and high mechanical compliance despite tough manufacturing. In this study, electroactive polymers are reviewed and the general enabling mechanisms employing their distinct characteristics are presented, and the factors influencing the properties of various electroactive polymers are also discussed. Our study also enumerates the current trends in the development of electroactive polymers along with its progress in aerospace discipline. The electromechanical properties of electroactive polymer materials endow them the capability to work as both sensors and actuators in the field of aerospace. Hence, we provide an overview of various applications of electroactive polymers in aerospace field, notably aircraft morphing. These actuators are vastly used in aerospace applications like Mars Nano-rover, space robotic, flapping wings and active flap. Therefore, the electroactive polymer applications such as effective actuators can be investigated more in their materials, molecular interactions, electromechanics and actuation mechanisms. Considering electroactive polymers unique properties, they will endeavour the great potential applications within aerospace industry.

[1]  E. Fontaine A Laboratory Demonstration of a Parallel Robotic Mechanism with Integrated EPAM Actuators , 2002 .

[2]  Alvo Aabloo,et al.  Ionic polymer–metal composite mechanoelectrical transduction: review and perspectives , 2010 .

[3]  Bertrand Tondu,et al.  Artificial Muscles for Humanoid Robots , 2007 .

[4]  J. Nam,et al.  Electrostrictive polymer nanocomposites exhibiting tunable electrical properties , 2005 .

[5]  Luis Felipe Gonzalez,et al.  An Overview of Small Unmanned Aerial Vehicles for Air Quality Measurements: Present Applications and Future Prospectives , 2016, Sensors.

[6]  Andreas Stemmer,et al.  Low voltage, highly tunable diffraction grating based on dielectric elastomer actuators , 2007, SPIE Smart Structures and Materials + Nondestructive Evaluation and Health Monitoring.

[7]  José L. Pons,et al.  Emerging Actuator Technologies: A Micromechatronic Approach , 2005 .

[8]  J. N. Kudva,et al.  Overview of the DARPA Smart Wing Project , 2004 .

[9]  Robert J. Wood,et al.  Fluid-driven origami-inspired artificial muscles , 2017, Proceedings of the National Academy of Sciences.

[10]  D. M. Elzey,et al.  Two-way Antagonistic Shape Actuation Based on the One-way Shape Memory Effect , 2008 .

[11]  D. Hanson Progress toward EAP actuators for biomimetic social robots , 2013, Smart Structures.

[12]  Yoseph Bar-Cohen,et al.  State-of-the-Art Developments in the Field of Electroactive Polymers , 2005 .

[13]  Ravi Vaidyanathan,et al.  Development of a novel Electro Active Polymer (EAP) actuator for driving the wings of flapping micro air vehicle , 2009 .

[14]  Sean Joseph Duggan,et al.  An experimental investigation of flapping wing propulsion for micro air vehicles , 2000 .

[15]  Anansa S. Ahmed,et al.  Morphing Soft Magnetic Composites , 2012, Advanced materials.

[16]  D. Rossi,et al.  Electroactive polymers: New materials for spacecraft structures , 2005 .

[17]  Mohsen Shahinpoor,et al.  Potential applications of electroactive polymer sensors and actuators in MEMS technologies , 2001, SPIE Micro + Nano Materials, Devices, and Applications.

[18]  John D Madden,et al.  Mobile Robots: Motor Challenges and Materials Solutions , 2007, Science.

[19]  Juin-Yih Lai,et al.  Advanced polyimide materials: Syntheses, physical properties and applications , 2012 .

[20]  Ali Khademhosseini,et al.  Handbook of Biomimetics and Bioinspiration: Biologically-Driven Engineering of Materials, Processes, Devices, and Systems(In 3 Volumes) , 2014 .

[21]  Martin Leary,et al.  A review of shape memory alloy research, applications and opportunities , 2014 .

[22]  Steffen Opitz,et al.  Experimental investigation of an active twist model rotor blade with a low voltage actuation system , 2015, The Aeronautical Journal.

[23]  Binbin Xi,et al.  Electroactive polymer actuator devices (EAPAD) , 2003, SPIE Smart Structures and Materials + Nondestructive Evaluation and Health Monitoring.

[24]  K. Asaka,et al.  Self-Sensing Ionic Polymer Actuators: A Review , 2015 .

[25]  Yoseph Bar-Cohen Robotics: electric flex , 2004 .

[26]  G. Alici An effective modelling approach to estimate nonlinear bending behaviour of cantilever type conducting polymer actuators , 2009 .

[27]  Valentina Motta,et al.  Discrete Time Open-Loop and Closed-Loop Flow Control Based on Van der Pol Modeling , 2016 .

[28]  A. K. Ghamsari,et al.  Bucky gel actuator for morphing applications , 2012 .

[29]  Tiesheng Wang,et al.  Electroactive polymers for sensing , 2016, Interface Focus.

[30]  Nikolaus Correll,et al.  Materials that couple sensing, actuation, computation, and communication , 2015, Science.

[31]  F. Xia,et al.  An all-organic composite actuator material with a high dielectric constant , 2002, Nature.

[32]  M. Yamakita,et al.  Active Polymers: An Overview , 2007 .

[33]  D. De Rossi,et al.  Biomimetic Dielectric Elastomer Actuators , 2006, The First IEEE/RAS-EMBS International Conference on Biomedical Robotics and Biomechatronics, 2006. BioRob 2006..

[34]  W. Huang,et al.  Stimulus-responsive shape memory materials: A review , 2012 .

[35]  Pradeep Kumar,et al.  Electroactive Polymers and Coatings , 2016 .

[36]  Kinji Asaka,et al.  Recent advances in ionic polymer–metal composite actuators and their modeling and applications , 2013 .

[37]  Anna-Maria Rivas McGowan,et al.  Recent results from NASA's morphing project , 2002, SPIE Smart Structures and Materials + Nondestructive Evaluation and Health Monitoring.

[38]  J. M. Gladis,et al.  Smart Electroactive Polymers and Composite Materials , 2016 .

[39]  Ou Ma,et al.  A review of space robotics technologies for on-orbit servicing , 2014 .

[40]  Yoseph Bar-Cohen,et al.  Electroactive polymer (EAP) actuators for planetary applications , 1999, Smart Structures.

[41]  Yanju Liu,et al.  Morphing aircraft based on smart materials and structures: A state-of-the-art review , 2016 .

[42]  Q. Pei,et al.  Advances in dielectric elastomers for actuators and artificial muscles. , 2010, Macromolecular rapid communications.

[43]  Emilie J. Siochi,et al.  Electrospinning of a micro-air vehicle wing skin , 2003 .

[44]  Johannes Scheller Electroactive morphing for the aerodynamic performance improvement of next generation airvehicles , 2015 .

[45]  Yoseph Bar-Cohen,et al.  The Coming Robot Revolution: Expectations and Fears About Emerging Intelligent, Humanlike Machines , 2009 .

[46]  Vivek Subramanian,et al.  Printed unmanned aerial vehicles using paper-based electroactive polymer actuators and organic ion gel transistors , 2016, Microsystems & Nanoengineering.

[47]  A. Larsson,et al.  Solvent fluxes measured on a membrane module , 1993 .

[48]  John Vogan Development of dielectric elastomer actuators for MRI devices , 2004 .

[49]  Y. Bar-Cohen,et al.  Electroactive Polymer Actuators and Sensors , 2008 .

[50]  E. Heitzer,et al.  Potential and Challenges of Liquid Biopsies , 2017 .

[51]  J. Nam,et al.  Dielectric Elastomers for Artificial Muscles , 2007 .

[52]  John R. Brauer Magnetic Actuators and Sensors , 2006 .

[53]  Thomas Ward,et al.  A Review of Biomimetic Air Vehicle Research: 1984-2014 , 2015 .

[54]  Qiming Zhang,et al.  An investigation of a thermally steerable electroactive polymer/shape memory polymer hybrid actuator , 2016 .

[55]  James R. Wertz,et al.  Space Mission Analysis and Design , 1992 .

[56]  Ronald S. Fearing,et al.  Wing transmission for a micromechanical flying insect , 2000, Proceedings 2000 ICRA. Millennium Conference. IEEE International Conference on Robotics and Automation. Symposia Proceedings (Cat. No.00CH37065).

[57]  Hossam Haick,et al.  Flexible sensors based on nanoparticles. , 2013, ACS nano.

[58]  Johannes Riemenschneider,et al.  Experimental Investigation of an Active Twist Model Rotor Blade Under Centrifugal Loads , 2013 .

[59]  Yan,et al.  Wing transmission for a micromechanical flying insect , 2001 .

[60]  Moon Jeong Park,et al.  Fast low-voltage electroactive actuators using nanostructured polymer electrolytes , 2013, Nature Communications.

[61]  Yoseph Bar-Cohen,et al.  Biological Inspiration for Musclelike Actuators of Robots , 2003 .

[62]  J. Nam,et al.  Investigations on actuation characteristics of IPMC artificial muscle actuator , 2003 .

[63]  Rahim Mutlu,et al.  Modeling a soft robotic mechanism articulated with dielectric elastomer actuators , 2014, 2014 IEEE/ASME International Conference on Advanced Intelligent Mechatronics.

[64]  Richard G. Cobb,et al.  Design, Fabrication, and Testing of an Insect-Sized MAV Wing Flapping Mechanism , 2011 .

[65]  M. Schoen,et al.  Overview of Electroactive Polymers , 2013 .

[66]  Yoseph Bar-Cohen,et al.  Electroactive polymers (EAP) as actuators for potential future planetary mechanisms , 2004, Proceedings. 2004 NASA/DoD Conference on Evolvable Hardware, 2004..

[67]  R. Verdejo,et al.  Increasing the performance of dielectric elastomer actuators: A review from the materials perspective , 2015 .

[68]  Peter Sommer-Larsen,et al.  A Conducting Polymer Artificial Muscle with 12 % Linear Strain , 2003 .

[69]  Karsten Danielmeier Electroactive Polymers: Developments of and Perspectives for Dielectric Elastomers , 2013 .

[70]  K. West,et al.  Mechanism of Actuation in Conducting Polymers: Osmotic Expansion , 2001 .

[71]  Andrea Mazzone,et al.  Novel actuators for haptic displays based on electroactive polymers , 2003, VRST '03.

[72]  Vishalini Bundhoo,et al.  Design and evaluation of a shape memory alloy-based tendon-driven actuation system for biomimetic artificial fingers , 2009 .

[73]  Rachel Z. Pytel,et al.  Artificial muscle technology: physical principles and naval prospects , 2004, IEEE Journal of Oceanic Engineering.

[74]  Sung-hoon Ahn,et al.  A review on IPMC material as actuators and sensors: Fabrications, characteristics and applications , 2012 .

[75]  Yoseph Bar-Cohen EAP History, Current Status, and Infrastructure , 2004 .

[76]  Yoseph Bar-Cohen,et al.  Electroactive Polymer (EAP) Actuators as Artificial Muscles: Reality, Potential, and Challenges, Second Edition , 2004 .

[77]  Richard Heydt,et al.  Electroelastomers: applications of dielectric elastomer transducers for actuation, generation, and smart structures , 2002, SPIE Smart Structures and Materials + Nondestructive Evaluation and Health Monitoring.

[78]  Kinji Asaka,et al.  Nanothorn electrodes for ionic polymer-metal composite artificial muscles , 2014, Scientific Reports.

[79]  R. Trask,et al.  Morphing in nature and beyond: a review of natural and synthetic shape-changing materials and mechanisms , 2016, Journal of Materials Science.

[80]  Edward P. DeMauro,et al.  Control of laminar separation bubble on NACA 0009 airfoil using electroactive polymers , 2015 .

[81]  Billie F. Spencer,et al.  Smart sensing technology: opportunities and challenges , 2004 .

[82]  T. Ghosh,et al.  Dielectric elastomers as next-generation polymeric actuators. , 2007, Soft matter.

[83]  Gerard Hazeu,et al.  European Landscape Dynamics: CORINE Land Cover Data , 2016 .

[84]  I. S. Rajay Vedaraj,et al.  Material analysis for artificial muscle and touch sensing of cooperative biomimetic manipulators , 2012 .

[85]  Cédric Plesse,et al.  In search of better electroactive polymer actuator materials: PPy versus PEDOT versus PEDOT–PPy composites , 2013 .

[86]  Srinivas Vasista,et al.  Realization of Morphing Wings: A Multidisciplinary Challenge , 2012 .

[87]  Michael F. Ashby,et al.  Actuator Classification and Selection—The Development of a Database , 2002 .

[88]  Mickaël Lallart,et al.  Review on energy harvesting for structural health monitoring in aeronautical applications , 2015 .

[89]  P. S. Rao INVESTIGATION AND DEVELOPMENT OF LIFE SAVING RESEARCH ROBOTS , 2009 .

[90]  Join Wang,et al.  Bioinspired design of tactile sensors based on Flemion , 2009 .

[91]  K. Kaneto Research Trends of Soft Actuators based on Electroactive Polymers and Conducting Polymers , 2016 .

[92]  Enrico Macii,et al.  Smart Electronic Systems: An Overview , 2016 .

[93]  Jinzhu Li,et al.  Superfast-response and ultrahigh-power-density electromechanical actuators based on hierarchal carbon nanotube electrodes and chitosan. , 2011, Nano letters.

[94]  Yoseph Bar-Cohen,et al.  Current and future developments in artificial muscles using electroactive polymers , 2005, Expert review of medical devices.

[95]  Véronique Michaud,et al.  Can shape memory alloy composites be smart , 2004 .

[96]  Richard Heydt,et al.  Electroactive polymers: an emerging technology for MEMS , 2004, SPIE MOEMS-MEMS.

[97]  D. De Rossi,et al.  Electro-Active Polymers For actuation and sensing in space applications , 2004 .

[98]  Marco Pavone,et al.  Spacecraft Autonomy Challenges for Next-Generation Space Missions , 2016 .

[99]  Alison B. Flatau,et al.  Smart Textile Transducers: Design, Techniques, and Applications , 2016 .

[100]  Yoseph Bar-Cohen,et al.  Electroactive polymers: current capabilities and challenges , 2002, SPIE Smart Structures and Materials + Nondestructive Evaluation and Health Monitoring.

[101]  Robert A. Freitas,et al.  Advanced automation for space missions , 1981, IJCAI 1981.

[102]  Andrew McDaid,et al.  Modelling and Control of IPMC Actuators for Biomedical Robotics Applications: A compliant stepper motor, an artificial muscle joint, a microfluidic pump and a cell microtool/gripper and manipulator , 2011 .

[103]  Maki K. Habib Biomimetics: innovations and robotics , 2011 .

[104]  Q. Pei,et al.  High-field deformation of elastomeric dielectrics for actuators , 2000 .

[105]  D. Rus,et al.  Design, fabrication and control of soft robots , 2015, Nature.

[106]  Yoseph Bar-Cohen,et al.  Challenges to the application of IPMC as actuators of planetary mechanisms , 2000, Smart Structures and Materials + Nondestructive Evaluation and Health Monitoring.

[107]  Larry A. Roe,et al.  A MEMS-based flexible sensor and actuator system for space inflatable structures , 2001 .

[108]  David J. Reinkensmeyer,et al.  Rehabilitation and Health Care Robotics , 2016, Springer Handbook of Robotics, 2nd Ed..

[109]  Z. Suo Theory of dielectric elastomers , 2010 .

[110]  Cristina Elizetxea,et al.  Potential and prospective implementation of carbon nanotubes on next generation aircraft and space vehicles: A review of current and expected applications in aerospace sciences , 2014 .

[111]  John D. W. Madden,et al.  Design of ultra-thin high frequency trilayer conducting polymer micro-actuators for tactile feedback interfaces , 2017, Smart Structures and Materials + Nondestructive Evaluation and Health Monitoring.

[112]  Johannes Scheller,et al.  Hybrid Electroactive Wings Morphing for Aeronautic Applications , 2013 .

[113]  Hans Peter Monner,et al.  Smart materials for active noise and vibration reduction , 2005 .

[114]  Arianna Menciassi,et al.  Bio-hybrid muscle cell-based actuators , 2012, Biomedical Microdevices.

[115]  Ji Su,et al.  Ferroelectric polymers as multifunctional electroactive materials: recent advances, potential, and challenges , 2015 .

[116]  Andrew T. Conn,et al.  From Natural Flyers to the Mechanical Realization of a Flapping Wing Micro Air Vehicle , 2006, 2006 IEEE International Conference on Robotics and Biomimetics.

[117]  A. Borriello,et al.  Electro-Active Polymers (EAPs): A Promising Route to Design Bio-Organic/Bioinspired Platforms with on Demand Functionalities , 2016, Polymers.

[118]  Eric Feron Advances in Control System Technology for Aerospace Applications , 2016 .

[119]  M. Braza,et al.  Experimental investigation of electroactive morphing for aeronautics applications , 2013 .

[120]  Richard,et al.  Space Robotics , 1982 .

[121]  Z. Kafafi,et al.  International Society for Optical Engineering Fullerenes and Photonics III , 1996 .

[122]  Li Zhou,et al.  Conceptual Design and Experimental Demonstration of a Distributedly Actuated Morphing Wing , 2015 .

[123]  Yong Zhu,et al.  Recent advances in shape–memory polymers: Structure, mechanism, functionality, modeling and applications , 2012 .

[124]  Frank Claeyssen,et al.  New Actuators for Aircraft and Space Applications , 2006 .

[125]  Yoseph Bar-Cohen,et al.  Humanoids and the Potential Role of Electroactive Materials/Mechanisms in Advancing their Capability , 2016 .

[126]  Na Li,et al.  New twist on artificial muscles , 2016, Proceedings of the National Academy of Sciences.

[127]  Junji Tani,et al.  Intelligent Material Systems: Application of Functional Materials , 1998 .

[128]  Geoffrey M. Spinks,et al.  Conductive Electroactive Polymers: Intelligent Polymer Systems , 2009 .

[129]  S. Shankar Sastry,et al.  Controllability issues in flapping flight for biomimetic micro aerial vehicles (MAVs) , 2003, 42nd IEEE International Conference on Decision and Control (IEEE Cat. No.03CH37475).

[130]  John D. W. Madden,et al.  Rate Limits in Conducting Polymers , 2008 .

[131]  S. Tadokoro,et al.  Electroactive Polymers for Robotic Applications: Artificial Muscles and Sensors , 2007 .

[132]  S. Tadokoro,et al.  Electroactive Polymers for Robotic Applications , 2007 .

[133]  Yoseph Bar-Cohen,et al.  Biomimetics—using nature to inspire human innovation , 2006, Bioinspiration & biomimetics.

[134]  S. Priya Advances in energy harvesting using low profile piezoelectric transducers , 2007 .

[135]  M SpinksGeoffrey,et al.  3D Printed Flexure Hinges for Soft Monolithic Prosthetic Fingers , 2016 .

[136]  Aleksandra M. Vinogradov,et al.  Accomplishments and future trends in the field of electroactive polymers , 2008, SPIE Smart Structures and Materials + Nondestructive Evaluation and Health Monitoring.

[137]  Urmas Johanson,et al.  Scalable fabrication of ionic and capacitive laminate actuators for soft robotics , 2017 .

[138]  Kinji Asaka,et al.  Current Status of Applications and Markets of Soft Actuators , 2014 .

[139]  Eiichi Shoji,et al.  Effects of humidity on the performance of ionic polymer-metal composite actuators: experimental study of the back-relaxation of actuators. , 2007, The journal of physical chemistry. B.

[140]  E. Scilingo,et al.  Polymer based interfaces as bioinspired 'smart skins'. , 2005, Advances in colloid and interface science.

[141]  Danilo De Rossi,et al.  Electroactive polymer-based devices for e-textiles in biomedicine , 2005, IEEE Transactions on Information Technology in Biomedicine.

[142]  Yoseph Bar-Cohen,et al.  Biomimetics: Nature-Based Innovation , 2011 .

[143]  Nicholas S. Baker,et al.  Design of a Flapping Wing Micro Air Vehicle Actuation System , 2012 .

[144]  Abdel Salam Hamdy Makhlouf,et al.  Industrial Applications for Intelligent Polymers and Coatings , 2016 .

[145]  Moise Marchal,et al.  Trailing-edge dynamics of a morphing NACA0012 aileron at high Reynolds number by high-speed PIV , 2015 .

[146]  Barry Chambers,et al.  Progress in smart microwave materials and structures , 2000 .

[147]  Pierre Lopez,et al.  Modeling and control of McKibben artificial muscle robot actuators , 2000 .

[148]  G. Wallace,et al.  Ionic electroactive polymer artificial muscles in space applications , 2014, Scientific Reports.

[149]  Li Yuan,et al.  Adaptive sliding mode control with linear matrix inequality based on a DEAP flexible actuator , 2017, 2017 29th Chinese Control And Decision Conference (CCDC).

[150]  Akio Yamamoto,et al.  Actuation Methods for Applications in MR Environments , 2006 .

[151]  Y. Bar-Cohen Electroactive Polymers as Artificial Muscles - Reality and Challenges , 2001 .

[152]  P. McHugh,et al.  A review on dielectric elastomer actuators, technology, applications, and challenges , 2008 .

[153]  Sergey Sukhoveyev Ultra high aspect-ratio MEMS and NEMS on basis of fibrous composite technology , 2008 .

[154]  Q. Wahab,et al.  New materials for micro-scale sensors and actuators An engineering review , 2007 .

[155]  John R. Brauer,et al.  Magnetic Actuators and Sensors: Brauer/Magnetic Actuators and Sensors , 2006 .

[156]  D. M. Elzey,et al.  A shape memory-based multifunctional structural actuator panel , 2005 .

[157]  Y. Bar-Cohen Electroactive Polymers as Artificial Muscles: Capabilities, Potentials and Challenges , 2000 .

[158]  Eric Moreau,et al.  Airflow control by non-thermal plasma actuators , 2007 .

[159]  Donald J. Leo,et al.  A bio-inspired bell kinematics design of a jellyfish robot using ionic polymer metal composites actuators , 2012, Smart Structures.

[160]  安積 欣志,et al.  Soft Actuators: Materials, Modeling, Applications, and Future Perspectives , 2014 .