Structural connectivity-based segmentation of the human entorhinal cortex

The medial (MEC) and lateral entorhinal cortex (LEC), widely studied in rodents, are well defined and characterized. In humans, however, the exact locations of their homologues remain uncertain. Previous functional magnetic resonance imaging (fMRI) studies have subdivided the human EC into posteromedial (pmEC) and anterolateral (alEC) parts, but uncertainty remains about the choice of imaging modality and seed regions, in particular in light of a substantial revision of the classical model of EC connectivity based on novel insights from rodent anatomy. Here, we used structural, not functional imaging, namely diffusion tensor imaging (DTI) and probabilistic tractography to segment the human EC based on differential connectivity to other brain regions known to project selectively to MEC or LEC. We defined MEC as more strongly connected with presubiculum and retrosplenial cortex (RSC), and LEC as more strongly connected with distal CA1 and proximal subiculum (dCA1pSub) and lateral orbitofrontal cortex (OFC). Although our DTI segmentation had a larger medial-lateral component than in the previous fMRI studies, our results show that the human MEC and LEC homologues have a border oriented both towards the posterior-anterior and medial-lateral axes, supporting the differentiation between pmEC and alEC.

[1]  H. Eichenbaum,et al.  The Neurophysiology of Memory , 2000, Annals of the New York Academy of Sciences.

[2]  Julien Cohen-Adad,et al.  Pushing the limits of in vivo diffusion MRI for the Human Connectome Project , 2013, NeuroImage.

[3]  R. Mayeux,et al.  Molecular drivers and cortical spread of lateral entorhinal cortex dysfunction in preclinical Alzheimer's disease , 2013, Nature Neuroscience.

[4]  M. Witter,et al.  Topographic organization of orbitofrontal projections to the parahippocampal region in rats , 2014, The Journal of comparative neurology.

[5]  Stephen M Smith,et al.  Fast robust automated brain extraction , 2002, Human brain mapping.

[6]  G Buzsáki,et al.  The hippocampo-neocortical dialogue. , 1996, Cerebral cortex.

[7]  Mark W. Woolrich,et al.  Probabilistic diffusion tractography with multiple fibre orientations: What can we gain? , 2007, NeuroImage.

[8]  D. Amaral,et al.  Entorhinal cortex of the monkey: IV. Topographical and laminar organization of cortical afferents , 2008, The Journal of comparative neurology.

[9]  Archana Venkataraman,et al.  Intrinsic functional connectivity as a tool for human connectomics: theory, properties, and optimization. , 2010, Journal of neurophysiology.

[10]  C. Ranganath,et al.  Functional subregions of the human entorhinal cortex , 2015, eLife.

[11]  E. Rolls,et al.  Extensive Cortical Connectivity of the Human Hippocampal Memory System: Beyond the "What" and "Where" Dual Stream Model. , 2021, Cerebral cortex.

[12]  T. Hafting,et al.  Microstructure of a spatial map in the entorhinal cortex , 2005, Nature.

[13]  R. Saunders,et al.  The entorhinal cortex: an examination of cyto- and myeloarchitectonic organization in humans. , 1997, Cerebral cortex.

[14]  Olivia K. Faull,et al.  Connectivity‐based segmentation of the periaqueductal gray matter in human with brainstem optimized diffusion MRI , 2015, Human brain mapping.

[15]  C. Almli,et al.  Unbiased nonlinear average age-appropriate brain templates from birth to adulthood , 2009, NeuroImage.

[16]  Philip S. Insel,et al.  Early stages of tau pathology and its associations with functional connectivity, atrophy and memory , 2021, Brain : a journal of neurology.

[17]  Katrin Amunts,et al.  Julich-Brain: A 3D probabilistic atlas of the human brain’s cytoarchitecture , 2020, Science.

[18]  Zachariah M. Reagh,et al.  Object and spatial mnemonic interference differentially engage lateral and medial entorhinal cortex in humans , 2014, Proceedings of the National Academy of Sciences.

[19]  D. Amaral,et al.  Hippocampal‐neocortical interaction: A hierarchy of associativity , 2000, Hippocampus.

[20]  Edvard I. Moser,et al.  Object-vector coding in the medial entorhinal cortex , 2018, bioRxiv.

[21]  C. Ranganath,et al.  Two cortical systems for memory-guided behaviour , 2012, Nature Reviews Neuroscience.

[22]  Sachin S. Deshmukh,et al.  Representation of Non-Spatial and Spatial Information in the Lateral Entorhinal Cortex , 2011, Front. Behav. Neurosci..

[23]  Alzheimer's Disease Neuroimaging Initiative,et al.  Cortical thickness atrophy in the transentorhinal cortex in mild cognitive impairment , 2018, NeuroImage: Clinical.

[24]  Timothy Edward John Behrens,et al.  Changes in connectivity profiles define functionally distinct regions in human medial frontal cortex. , 2004, Proceedings of the National Academy of Sciences of the United States of America.

[25]  M. Witter,et al.  Convergent Projections from Perirhinal and Postrhinal Cortices Suggest a Multisensory Nature of Lateral, but Not Medial, Entorhinal Cortex. , 2019, Cell reports.

[26]  Menno P Witter,et al.  Neurons and networks in the entorhinal cortex: A reappraisal of the lateral and medial entorhinal subdivisions mediating parallel cortical pathways , 2019, Hippocampus.

[27]  Habib Benali,et al.  Relating Structural and Functional Connectivity in MRI: A Simple Model for a Complex Brain , 2015, IEEE Transactions on Medical Imaging.

[28]  M. Fyhn,et al.  Spatial Representation in the Entorhinal Cortex , 2004, Science.

[29]  John S. Duncan,et al.  Noninvasive in vivo demonstration of the connections of the human parahippocampal gyrus , 2004, NeuroImage.

[30]  Mingzhou Ding,et al.  Linking Functional Connectivity and Structural Connectivity Quantitatively: A Comparison of Methods , 2016, Brain Connect..

[31]  R. Vertes,et al.  Anatomical analysis of afferent projections to the medial prefrontal cortex in the rat , 2007, Brain Structure and Function.

[32]  Bruce R. Rosen,et al.  MGH–USC Human Connectome Project datasets with ultra-high b-value diffusion MRI , 2016, NeuroImage.

[33]  Nikos Makris,et al.  Automatically parcellating the human cerebral cortex. , 2004, Cerebral cortex.

[34]  P. V. van Zijl,et al.  Three‐dimensional tracking of axonal projections in the brain by magnetic resonance imaging , 1999, Annals of neurology.

[35]  H. Eichenbaum,et al.  The medial temporal lobe and recognition memory. , 2007, Annual review of neuroscience.

[36]  Julien Cohen-Adad,et al.  The Human Connectome Project and beyond: Initial applications of 300mT/m gradients , 2013, NeuroImage.

[37]  R. Knight,et al.  The Hippocampus and Entorhinal Cortex Encode the Path and Euclidean Distances to Goals during Navigation , 2014, Current Biology.

[38]  Christian F. Doeller,et al.  Mapping sequence structure in the human lateral entorhinal cortex , 2019, eLife.

[39]  Arno Klein,et al.  A reproducible evaluation of ANTs similarity metric performance in brain image registration , 2011, NeuroImage.

[40]  D. Amaral,et al.  Entorhinal cortex of the monkey: V. Projections to the dentate gyrus, hippocampus, and subicular complex , 1991, The Journal of comparative neurology.

[41]  P. Barzó,et al.  Connectivity-based segmentation of the brainstem by probabilistic tractography , 2018, Brain Research.

[42]  Øyvind Arne Høydal,et al.  Object-vector coding in the medial entorhinal cortex , 2019, Nature.

[43]  K. Saleem,et al.  Complementary circuits connecting the orbital and medial prefrontal networks with the temporal, insular, and opercular cortex in the macaque monkey , 2008, The Journal of comparative neurology.

[44]  Christian F. Doeller,et al.  Evidence for grid cells in a human memory network , 2010, Nature.

[45]  B. Fischl,et al.  Direct Visualization of the Perforant Pathway in the Human Brain with Ex Vivo Diffusion Tensor Imaging , 2010, Front. Hum. Neurosci..

[46]  Norio Ishizuka,et al.  Organization of connectivity of the rat presubiculum: II. Associational and commissural connections , 2008, The Journal of comparative neurology.

[47]  M. Moser,et al.  Traces of Experience in the Lateral Entorhinal Cortex , 2013, Current Biology.

[48]  J. Michael Wyass,et al.  Connections between the retrosplenial cortex and the hippocampal formation in the rat: A review , 1992, Hippocampus.

[49]  M. Witter,et al.  Architecture of the Entorhinal Cortex A Review of Entorhinal Anatomy in Rodents with Some Comparative Notes , 2017, Front. Syst. Neurosci..

[50]  Norio Ishizuka,et al.  Organization of connectivity of the rat presubiculum: I. Efferent projections to the medial entorhinal cortex , 2004, The Journal of comparative neurology.

[51]  M. Witter,et al.  Regional and laminar organization of projections from the presubiculum and parasubiculum to the entorhinal cortex: An anterograde tracing study in the rat , 1993, The Journal of comparative neurology.

[52]  M. Witter,et al.  What Does the Anatomical Organization of the Entorhinal Cortex Tell Us? , 2008, Neural plasticity.

[53]  Natalie L. M. Cappaert,et al.  The anatomy of memory: an interactive overview of the parahippocampal–hippocampal network , 2009, Nature Reviews Neuroscience.

[54]  Sachin S. Deshmukh,et al.  Functional correlates of the lateral and medial entorhinal cortex: objects, path integration and local–global reference frames , 2014, Philosophical Transactions of the Royal Society B: Biological Sciences.

[55]  Zachariah M. Reagh,et al.  Precise temporal memories are supported by the lateral entorhinal cortex in humans , 2019, Nature Neuroscience.

[56]  Christian F. Doeller,et al.  Functional topography of the human entorhinal cortex , 2015, eLife.

[57]  M. Witter,et al.  Cingulate cortex projections to the parahippocampal region and hippocampal formation in the rat , 2007, Hippocampus.

[58]  S. Mori,et al.  Principles of Diffusion Tensor Imaging and Its Applications to Basic Neuroscience Research , 2006, Neuron.

[59]  Bruce R. Rosen,et al.  Investigating the Capability to Resolve Complex White Matter Structures with High b-Value Diffusion Magnetic Resonance Imaging on the MGH-USC Connectom Scanner , 2014, Brain Connect..

[60]  D. Amaral,et al.  The entorhinal cortex of the monkey: VI. Organization of projections from the hippocampus, subiculum, presubiculum, and parasubiculum , 2020, The Journal of comparative neurology.

[61]  J. Peters,et al.  Direct Evidence for Domain-Sensitive Functional Subregions in Human Entorhinal Cortex , 2012, The Journal of Neuroscience.

[62]  Edvard I. Moser,et al.  Grid Cells and Neural Coding in High-End Cortices , 2013, Neuron.

[63]  Mark W. Woolrich,et al.  FSL , 2012, NeuroImage.

[64]  Tobias Navarro Schröder,et al.  Grid-cell representations in mental simulation , 2016, eLife.

[65]  Kara L. Agster,et al.  Functional neuroanatomy of the parahippocampal region: The lateral and medial entorhinal areas , 2007, Hippocampus.

[66]  Stefan Skare,et al.  Ultra-high resolution diffusion tensor imaging of the microscopic pathways of the medial temporal lobe , 2012, NeuroImage.

[67]  Bruce Fischl,et al.  Connectivity-based segmentation of human amygdala nuclei using probabilistic tractography , 2011, NeuroImage.

[68]  Steen Moeller,et al.  Fusion in diffusion MRI for improved fibre orientation estimation: An application to the 3T and 7T data of the Human Connectome Project , 2016, NeuroImage.

[69]  R. Insausti,et al.  The human entorhinal cortex: A cytoarchitectonic analysis , 1995, The Journal of comparative neurology.

[70]  Timothy Edward John Behrens,et al.  Characterization and propagation of uncertainty in diffusion‐weighted MR imaging , 2003, Magnetic resonance in medicine.

[71]  Li Lu,et al.  Integrating time from experience in the lateral entorhinal cortex , 2018, Nature.

[72]  Thomas Wolbers,et al.  Computing distance information from landmarks and self-motion cues - Differential contributions of anterior-lateral vs. posterior-medial entorhinal cortex in humans , 2019, NeuroImage.

[73]  Koenraad Van Leemput,et al.  A computational atlas of the hippocampal formation using ex vivo, ultra-high resolution MRI: Application to adaptive segmentation of in vivo MRI , 2015, NeuroImage.

[74]  Timothy Edward John Behrens,et al.  Non-invasive mapping of connections between human thalamus and cortex using diffusion imaging , 2003, Nature Neuroscience.