A pure salience response in posterior parietal cortex.

When exploring a visual scene, some objects perceptually popout because of a difference of color, shape, or size. This bottom-up information is an important part of many models describing the allocation of visual attention. It has been hypothesized that the lateral intraparietal area (LIP) acts as a "priority map," integrating bottom-up and top-down information to guide the allocation of attention. Despite a large literature describing top-down influences in LIP, the presence of a pure salience response to a salient stimulus defined by its static features alone has not been reported. We compared LIP responses with colored salient stimuli and distractors in a passive fixation task. Many LIP neurons responded preferentially to 1 of the 2 colored stimuli, yet the mean responses to the salient stimuli were significantly higher than to distractors, independent of the features of the stimuli. These enhanced responses were significant within 75 ms, and the mean responses to salient and distractor stimuli were tightly correlated, suggesting a simple gain control. We propose that a pure salience signal rapidly appears in LIP by collating salience signals from earlier visual areas. This contributes to the creation of a priority map, which is used to guide attention and saccades.

[1]  A. Treisman,et al.  A feature-integration theory of attention , 1980, Cognitive Psychology.

[2]  D. Robinson,et al.  Behavioral enhancement of visual responses in monkey cerebral cortex. I. Modulation in posterior parietal cortex related to selective visual attention. , 1981, Journal of neurophysiology.

[3]  M. Goldberg,et al.  Behavioral enhancement of visual responses in monkey cerebral cortex. II. Modulation in frontal eye fields specifically related to saccades. , 1981, Journal of neurophysiology.

[4]  Lance M. Optican,et al.  Unix-based multiple-process system, for real-time data acquisition and control , 1982 .

[5]  S Ullman,et al.  Shifts in selective visual attention: towards the underlying neural circuitry. , 1985, Human neurobiology.

[6]  R. Andersen,et al.  Visual receptive field organization and cortico‐cortical connections of the lateral intraparietal area (area LIP) in the macaque , 1990, The Journal of comparative neurology.

[7]  A. Treisman,et al.  Conjunction search revisited. , 1990, Journal of experimental psychology. Human perception and performance.

[8]  R. Andersen,et al.  Saccade-related activity in the lateral intraparietal area. II. Spatial properties. , 1991, Journal of neurophysiology.

[9]  R. Andersen,et al.  Saccade-related activity in the lateral intraparietal area. I. Temporal properties; comparison with area 7a. , 1991, Journal of neurophysiology.

[10]  D. V. van Essen,et al.  Neuronal responses to static texture patterns in area V1 of the alert macaque monkey. , 1992, Journal of neurophysiology.

[11]  J. Wolfe,et al.  Guided Search 2.0 A revised model of visual search , 1994, Psychonomic bulletin & review.

[12]  J. Wolfe Visual search in continuous, naturalistic stimuli , 1994, Vision Research.

[13]  C. Colby,et al.  Spatial representations for action in parietal cortex. , 1996, Brain research. Cognitive brain research.

[14]  Victor A. F. Lamme,et al.  Contextual Modulation in Primary Visual Cortex , 1996, The Journal of Neuroscience.

[15]  N. P. Bichot,et al.  Perceptual and motor processing stages identified in the activity of macaque frontal eye field neurons during visual search. , 1996, Journal of neurophysiology.

[16]  Ken Nakayama,et al.  Attentional requirements in a ‘preattentive’ feature search task , 1997, Nature.

[17]  S. Yantis,et al.  Visual attention: control, representation, and time course. , 1997, Annual review of psychology.

[18]  John H. R. Maunsell,et al.  Shape selectivity in primate lateral intraparietal cortex , 1998, Nature.

[19]  M. Goldberg,et al.  The representation of visual salience in monkey parietal cortex , 1998, Nature.

[20]  Jacqueline Gottlieb,et al.  The lateral intraparietal area as a salience map: the representation of abrupt onset, stimulus motion, and task relevance , 2000, Vision Research.

[21]  C. Connor,et al.  Shape representation in area V4: position-specific tuning for boundary conformation. , 2001, Journal of neurophysiology.

[22]  C. Koch,et al.  Computational modelling of visual attention , 2001, Nature Reviews Neuroscience.

[23]  Zhaoping Li A saliency map in primary visual cortex , 2002, Trends in Cognitive Sciences.

[24]  J. Assad,et al.  Dynamic coding of behaviourally relevant stimuli in parietal cortex , 2002, Nature.

[25]  E. Keller,et al.  Saccade target selection in the superior colliculus during a visual search task. , 2002, Journal of neurophysiology.

[26]  Jay Hegdé,et al.  How Selective Are V1 Cells for Pop-Out Stimuli? , 2003, The Journal of Neuroscience.

[27]  J. Gallant,et al.  Goal-Related Activity in V4 during Free Viewing Visual Search Evidence for a Ventral Stream Visual Salience Map , 2003, Neuron.

[28]  M. Goldberg,et al.  Neuronal Activity in the Lateral Intraparietal Area and Spatial Attention , 2003, Science.

[29]  Jillian H. Fecteau,et al.  Neural correlates of the automatic and goal-driven biases in orienting spatial attention. , 2004, Journal of neurophysiology.

[30]  R. Andersen,et al.  Memory related motor planning activity in posterior parietal cortex of macaque , 1988, Experimental Brain Research.

[31]  J. Wolfe,et al.  What attributes guide the deployment of visual attention and how do they do it? , 2004, Nature Reviews Neuroscience.

[32]  Jeffrey D Schall,et al.  On the role of frontal eye field in guiding attention and saccades , 2004, Vision Research.

[33]  Robert H. Wurtz,et al.  Subcortical Modulation of Attention Counters Change Blindness , 2004, The Journal of Neuroscience.

[34]  Peter W Dicke,et al.  Neuron-specific contribution of the superior colliculus to overt and covert shifts of attention , 2004, Nature Neuroscience.

[35]  Takashi R Sato,et al.  Neuronal Basis of Covert Spatial Attention in the Frontal Eye Field , 2005, The Journal of Neuroscience.

[36]  M. A. Steinmetz,et al.  Posterior Parietal Cortex Automatically Encodes the Location of Salient Stimuli , 2005, The Journal of Neuroscience.

[37]  M. Goldberg,et al.  Activity in the Lateral Intraparietal Area Predicts the Goal and Latency of Saccades in a Free-Viewing Visual Search Task , 2006, The Journal of Neuroscience.

[38]  Jillian H. Fecteau,et al.  Salience, relevance, and firing: a priority map for target selection , 2006, Trends in Cognitive Sciences.

[39]  Jacqueline Gottlieb,et al.  Integration of Exogenous Input into a Dynamic Salience Map Revealed by Perturbing Attention , 2006, The Journal of Neuroscience.

[40]  Puiu F. Balan,et al.  Integration of Visuospatial and Effector Information during Symbolically Cued Limb Movements in Monkey Lateral Intraparietal Area , 2006, The Journal of Neuroscience.

[41]  S. Yantis,et al.  Selective visual attention and perceptual coherence , 2006, Trends in Cognitive Sciences.

[42]  James W Bisley,et al.  Neural correlates of attention and distractibility in the lateral intraparietal area. , 2006, Journal of neurophysiology.

[43]  E. Miller,et al.  Response to Comment on "Top-Down Versus Bottom-Up Control of Attention in the Prefrontal and Posterior Parietal Cortices" , 2007, Science.

[44]  M. Paré,et al.  Temporal processing of saccade targets in parietal cortex area LIP during visual search. , 2007, Journal of neurophysiology.

[45]  Jacqueline Gottlieb,et al.  Neuronal Correlates of the Set-Size Effect in Monkey Lateral Intraparietal Area , 2008, PLoS biology.

[46]  C. Jouffrais,et al.  Natural textures classification in area V4 of the macaque monkey , 2008, Experimental Brain Research.

[47]  Anna E. Ipata,et al.  Neurons in the lateral intraparietal area create a priority map by the combination of disparate signals , 2008, Experimental Brain Research.

[48]  M. Shadlen,et al.  Decision-making with multiple alternatives , 2008, Nature Neuroscience.

[49]  J. Bisley,et al.  Been there, seen that: a neural mechanism for performing efficient visual search. , 2009, Journal of neurophysiology.

[50]  Hidehiko Komatsu,et al.  Condition-dependent and condition-independent target selection in the macaque posterior parietal cortex. , 2009, Journal of neurophysiology.

[51]  Tirin Moore,et al.  Influence and Limitations of Popout in the Selection of Salient Visual Stimuli by Area V4 Neurons , 2009, The Journal of Neuroscience.

[52]  Tirin Moore,et al.  Selection and Maintenance of Spatial Information by Frontal Eye Field Neurons , 2009, The Journal of Neuroscience.

[53]  J. Assad,et al.  Direction selectivity of neurons in the macaque lateral intraparietal area. , 2009, Journal of neurophysiology.

[54]  M. Goldberg,et al.  Attention, intention, and priority in the parietal lobe. , 2010, Annual review of neuroscience.

[55]  G. Orban,et al.  Searching for a salient target involves frontal regions. , 2010, Cerebral cortex.

[56]  B Suresh Krishna,et al.  Surround Suppression Sharpens the Priority Map in the Lateral Intraparietal Area , 2022 .

[57]  J. Bisley,et al.  Microstimulation of posterior parietal cortex biases the selection of eye movement goals during search. , 2010, Journal of neurophysiology.

[58]  Kenway Louie,et al.  Separating Value from Choice: Delay Discounting Activity in the Lateral Intraparietal Area , 2010, The Journal of Neuroscience.