A dopamine gradient controls access to distributed working memory in the large-scale monkey cortex

[1]  Michael J. Wolff,et al.  What is the functional role of delay-related alpha oscillations during working memory? , 2021 .

[2]  Arif A. Hamid,et al.  Wave-like dopamine dynamics as a mechanism for spatiotemporal credit assignment , 2021, Cell.

[3]  Matthew F. Panichello,et al.  Shared mechanisms underlie the control of working memory and attention , 2021, Nature.

[4]  Xiao-Jing Wang,et al.  Gradients of receptor expression in the macaque cortex , 2021, bioRxiv.

[5]  John K. Tsotsos,et al.  Feature-based attention induces surround suppression during the perception of visual motion , 2021, bioRxiv.

[6]  Karl Zilles,et al.  Organization of the macaque monkey inferior parietal lobule based on multimodal receptor architectonics , 2021, NeuroImage.

[7]  K. Norman,et al.  Is Activity Silent Working Memory Simply Episodic Memory? , 2021, Trends in Cognitive Sciences.

[8]  S. Dienel,et al.  Distinct Laminar and Cellular Patterns of GABA Neuron Transcript Expression in Monkey Prefrontal and Visual Cortices. , 2020, Cerebral cortex.

[9]  A. Arnsten,et al.  The genie in the bottle-magnified calcium signaling in dorsolateral prefrontal cortex , 2020, Molecular Psychiatry.

[10]  Karl Zilles,et al.  Multimodal 3D atlas of the macaque monkey motor and premotor cortex , 2020, NeuroImage.

[11]  David Kulp,et al.  Innovations present in the primate interneuron repertoire , 2020, Nature.

[12]  P. Roelfsema,et al.  A Quantitative Comparison of Inhibitory Interneuron Size and Distribution between Mouse and Macaque V1, Using Calcium-Binding Proteins , 2020, Cerebral cortex communications.

[13]  Ilana B. Witten,et al.  A comparison of dopaminergic and cholinergic populations reveals unique contributions of VTA dopamine neurons to short-term memory , 2020, bioRxiv.

[14]  Ben D. Fulcher,et al.  Topographic gradients of intrinsic dynamics across neocortex , 2020, bioRxiv.

[15]  K. Zilles,et al.  Receptor-driven, multimodal mapping of cortical areas in the macaque monkey intraparietal sulcus , 2020, eLife.

[16]  L. Zweifel,et al.  Anatomic resolution of neurotransmitter-specific projections to the VTA reveals diversity of GABAergic inputs , 2020, Nature Neuroscience.

[17]  Henry Kennedy,et al.  Cortical hierarchy, dual counterstream architecture and the importance of top-down generative networks , 2020, NeuroImage.

[18]  Kirsten C. S. Adam,et al.  Interplay between persistent activity and activity-silent dynamics in prefrontal cortex underlies serial biases in working memory , 2020, Nature Neuroscience.

[19]  Adam S. Lowet,et al.  Muscarinic M1 Receptors Modulate Working Memory Performance and Activity via KCNQ Potassium Channels in the Primate Prefrontal Cortex , 2020, Neuron.

[20]  John D. Murray,et al.  Generative modeling of brain maps with spatial autocorrelation , 2020, NeuroImage.

[21]  Xiao-Jing Wang Macroscopic gradients of synaptic excitation and inhibition in the neocortex , 2020, Nature Reviews Neuroscience.

[22]  R. Romo,et al.  Turning Touch into Perception , 2020, Neuron.

[23]  Carlos D. Brody,et al.  Task-Dependent Changes in the Large-Scale Dynamics and Necessity of Cortical Regions , 2019, Neuron.

[24]  Jorge F. Mejias,et al.  Mechanisms of distributed working memory in a large-scale model of the macaque neocortex , 2019, bioRxiv.

[25]  Allan R. Jones,et al.  Conserved cell types with divergent features in human versus mouse cortex , 2019, Nature.

[26]  C. Galletti,et al.  Receptor density pattern confirms and enhances the anatomic-functional features of the macaque superior parietal lobule areas , 2019, Brain Structure and Function.

[27]  L. Kaczmarek,et al.  Role of KCNQ potassium channels in stress-induced deficit of working memory , 2019, Neurobiology of Stress.

[28]  A. Arnsten,et al.  A novel dopamine D1 receptor agonist excites delay-dependent working memory-related neuronal firing in primate dorsolateral prefrontal cortex , 2019, Neuropharmacology.

[29]  T. Moore,et al.  Dopamine Receptor Expression Among Local and Visual Cortex-Projecting Frontal Eye Field Neurons. , 2019, Cerebral cortex.

[30]  B. Doiron,et al.  Circuit Models of Low-Dimensional Shared Variability in Cortical Networks , 2019, Neuron.

[31]  Nicholas A. Steinmetz,et al.  Sensory coding and the causal impact of mouse cortex in a visual decision , 2018, bioRxiv.

[32]  G. Fishell,et al.  Four Unique Interneuron Populations Reside in Neocortical Layer 1 , 2018, The Journal of Neuroscience.

[33]  K. Zilles,et al.  Cortical Gradients and Laminar Projections in Mammals , 2018, Trends in Neurosciences.

[34]  J. Gordon,et al.  Somatostatin Interneurons Facilitate Hippocampal-Prefrontal Synchrony and Prefrontal Spatial Encoding , 2018, Neuron.

[35]  Markus Diesmann,et al.  A multi-scale layer-resolved spiking network model of resting-state dynamics in macaque visual cortical areas , 2018, PLoS Comput. Biol..

[36]  T. Hashimoto,et al.  Expression of Transcripts Selective for GABA Neuron Subpopulations across the Cortical Visuospatial Working Memory Network in the Healthy State and Schizophrenia. , 2018, Cerebral cortex.

[37]  M. R. Riley,et al.  Anterior-posterior gradient of plasticity in primate prefrontal cortex , 2018, Nature Communications.

[38]  Kirstie J. Whitaker,et al.  Raincloud plots: a multi-platform tool for robust data visualization , 2018, PeerJ Prepr..

[39]  Ben D. Fulcher,et al.  Multimodal gradients across mouse cortex , 2018, Proceedings of the National Academy of Sciences.

[40]  Christos Constantinidis,et al.  Persistent Spiking Activity Underlies Working Memory , 2018, The Journal of Neuroscience.

[41]  Earl K Miller,et al.  Working Memory: Delay Activity, Yes! Persistent Activity? Maybe Not , 2018, The Journal of Neuroscience.

[42]  S. Duan,et al.  Active information maintenance in working memory by a sensory cortex , 2018, bioRxiv.

[43]  Ben D. Fulcher,et al.  A practical guide to linking brain-wide gene expression and neuroimaging data , 2018, NeuroImage.

[44]  Stanislas Dehaene,et al.  Probing the limits of activity-silent non-conscious working memory , 2018, Proceedings of the National Academy of Sciences.

[45]  A. Bernacchia,et al.  Hierarchy of transcriptomic specialization across human cortex captured by structural neuroimaging topography , 2018, Nature Neuroscience.

[46]  D. López-Barroso,et al.  Plasticity in the Working Memory System: Life Span Changes and Response to Injury , 2018, The Neuroscientist : a review journal bringing neurobiology, neurology and psychiatry.

[47]  Xiao-Jing Wang,et al.  Engagement of Pulvino-cortical Feedforward and Feedback Pathways in Cognitive Computations , 2018, Neuron.

[48]  P. Roelfsema,et al.  The threshold for conscious report: Signal loss and response bias in visual and frontal cortex , 2018, Science.

[49]  Nicolas Y. Masse,et al.  Circuit mechanisms for the maintenance and manipulation of information in working memory , 2018, Nature Neuroscience.

[50]  Joel Z. Leibo,et al.  Prefrontal cortex as a meta-reinforcement learning system , 2018, Nature Neuroscience.

[51]  T. Moore,et al.  Differential Expression of Dopamine D5 Receptors across Neuronal Subtypes in Macaque Frontal Eye Field , 2018, Front. Neural Circuits.

[52]  Sergey L. Gratiy,et al.  Fully integrated silicon probes for high-density recording of neural activity , 2017, Nature.

[53]  M. Husain,et al.  Fractionating the Neurocognitive Mechanisms Underlying Working Memory: Independent Effects of Dopamine and Parkinson’s Disease , 2017, Cerebral cortex.

[54]  Xiao-Jing Wang,et al.  Inter-areal Balanced Amplification Enhances Signal Propagation in a Large-Scale Circuit Model of the Primate Cortex , 2017, Neuron.

[55]  Matthew J. Aburn,et al.  The modulation of neural gain facilitates a transition between functional segregation and integration in the brain , 2017, bioRxiv.

[56]  Matthew L. Leavitt,et al.  Sustained Activity Encoding Working Memories: Not Fully Distributed , 2017, Trends in Neurosciences.

[57]  A. Arnsten,et al.  Nicotinic α4β2 Cholinergic Receptor Influences on Dorsolateral Prefrontal Cortical Neuronal Firing during a Working Memory Task , 2017, The Journal of Neuroscience.

[58]  R. Murray,et al.  The effect of perinatal brain injury on dopaminergic function and hippocampal volume in adult life , 2017, bioRxiv.

[59]  Zengcai V. Guo,et al.  Maintenance of persistent activity in a frontal thalamocortical loop , 2017, Nature.

[60]  Roshan Cools,et al.  The Neurocognitive Cost of Enhancing Cognition with Methylphenidate: Improved Distractor Resistance but Impaired Updating , 2017, Journal of Cognitive Neuroscience.

[61]  Elkan G. Akyürek,et al.  Dynamic hidden states underlying working memory guided behaviour , 2017, Nature Neuroscience.

[62]  William Muñoz,et al.  Layer-specific modulation of neocortical dendritic inhibition during active wakefulness , 2017, Science.

[63]  Xiao-Jing Wang,et al.  Working Memory and Decision-Making in a Frontoparietal Circuit Model , 2017, The Journal of Neuroscience.

[64]  Claus Svarer,et al.  A High-Resolution In Vivo Atlas of the Human Brain's Serotonin System , 2017, The Journal of Neuroscience.

[65]  M. Tsodyks,et al.  A theory of working memory without consciousness or sustained activity , 2016, bioRxiv.

[66]  Xiao-Jing Wang,et al.  Inhibitory Control in the Cortico-Basal Ganglia-Thalamocortical Loop: Complex Regulation and Interplay with Memory and Decision Processes , 2016, Neuron.

[67]  Adam C. Riggall,et al.  Reactivation of latent working memories with transcranial magnetic stimulation , 2016, Science.

[68]  J. Staiger,et al.  Parvalbumin- and vasoactive intestinal polypeptide-expressing neocortical interneurons impose differential inhibition on Martinotti cells , 2016, Nature Communications.

[69]  Elizabeth Jefferies,et al.  Situating the default-mode network along a principal gradient of macroscale cortical organization , 2016, Proceedings of the National Academy of Sciences.

[70]  O. Paulsen,et al.  Stochastic and deterministic dynamics of intrinsically irregular firing in cortical inhibitory interneurons , 2016, eLife.

[71]  Xiao-Jing Wang,et al.  Feedforward and feedback frequency-dependent interactions in a large-scale laminar network of the primate cortex , 2016, Science Advances.

[72]  R. Tremblay,et al.  GABAergic Interneurons in the Neocortex: From Cellular Properties to Circuits , 2016, Neuron.

[73]  M. Ronaghi,et al.  Neuronal subtypes and diversity revealed by single-nucleus RNA sequencing of the human brain , 2016, Science.

[74]  Chad J. Donahue,et al.  Using Diffusion Tractography to Predict Cortical Connection Strength and Distance: A Quantitative Comparison with Tracers in the Monkey , 2016, The Journal of Neuroscience.

[75]  Anais M. Rodriguez-Thompson,et al.  Dopamine D1 signaling organizes network dynamics underlying working memory , 2016, Science Advances.

[76]  D. Dunning,et al.  A meta-analysis of working memory impairments in survivors of moderate-to-severe traumatic brain injury. , 2016, Neuropsychology.

[77]  Jordan M. Sorokin,et al.  Brain-Wide Maps of Synaptic Input to Cortical Interneurons , 2016, The Journal of Neuroscience.

[78]  Xiao-Jing Wang,et al.  A dendritic disinhibitory circuit mechanism for pathway-specific gating , 2016, Nature Communications.

[79]  Ranulfo Romo,et al.  A Neural Parametric Code for Storing Information of More than One Sensory Modality in Working Memory , 2016, Neuron.

[80]  Daeyeol Lee,et al.  Stress Impairs Prefrontal Cortical Function via D1 Dopamine Receptor Interactions With Hyperpolarization-Activated Cyclic Nucleotide-Gated Channels , 2015, Biological Psychiatry.

[81]  Alexander S. Ecker,et al.  Principles of connectivity among morphologically defined cell types in adult neocortex , 2015, Science.

[82]  A. Kohn,et al.  Coordinated Neuronal Activity Enhances Corticocortical Communication , 2015, Neuron.

[83]  Jared X. Van Snellenberg,et al.  Deficits in prefrontal cortical and extrastriatal dopamine release in schizophrenia: a positron emission tomographic functional magnetic resonance imaging study. , 2015, JAMA psychiatry.

[84]  H. Kennedy,et al.  A Large-Scale Circuit Mechanism for Hierarchical Dynamical Processing in the Primate Cortex , 2015, Neuron.

[85]  Joseph J. Marlin,et al.  GABA-A Receptor Inhibition of Local Calcium Signaling in Spines and Dendrites , 2014, The Journal of Neuroscience.

[86]  D. Kleinfeld,et al.  Cell-based reporters reveal in vivo dynamics of dopamine and norepinephrine release in murine cortex , 2014, Nature Methods.

[87]  Julio C. Martinez-Trujillo,et al.  Sharp emergence of feature-selective sustained activity along the dorsal visual pathway , 2014, Nature Neuroscience.

[88]  S. Funahashi,et al.  Neural mechanisms of dual-task interference and cognitive capacity limitation in the prefrontal cortex , 2014, Nature Neuroscience.

[89]  J. Kaas,et al.  Corticocortical projections to representations of the teeth, tongue, and face in somatosensory area 3b of macaques , 2014, The Journal of comparative neurology.

[90]  Nikola T. Markov,et al.  Cortical High-Density Counterstream Architectures , 2013, Science.

[91]  G. Fishell,et al.  A disinhibitory circuit mediates motor integration in the somatosensory cortex , 2013, Nature Neuroscience.

[92]  A. Arnsten,et al.  Nicotinic α7 receptors enhance NMDA cognitive circuits in dorsolateral prefrontal cortex , 2013, Proceedings of the National Academy of Sciences.

[93]  M. Scanziani,et al.  Inhibition of Inhibition in Visual Cortex: The Logic of Connections Between Molecularly Distinct Interneurons , 2013, Nature Neuroscience.

[94]  Nikola T. Markov,et al.  Anatomy of hierarchy: Feedforward and feedback pathways in macaque visual cortex , 2013, The Journal of comparative neurology.

[95]  J. Gottlieb,et al.  Distinct neural mechanisms of distractor suppression in the frontal and parietal lobe , 2012, Nature Neuroscience.

[96]  H. Adesnik,et al.  A neural circuit for spatial summation in visual cortex , 2012, Nature.

[97]  A. Arnsten,et al.  Neuromodulation of Thought: Flexibilities and Vulnerabilities in Prefrontal Cortical Network Synapses , 2012, Neuron.

[98]  Nikola T. Markov,et al.  A Weighted and Directed Interareal Connectivity Matrix for Macaque Cerebral Cortex , 2012, Cerebral cortex.

[99]  R. Romo,et al.  Dopaminergic activity coincides with stimulus detection by the frontal lobe , 2012, Neuroscience.

[100]  Sachie K. Ogawa,et al.  Whole-Brain Mapping of Direct Inputs to Midbrain Dopamine Neurons , 2012, Neuron.

[101]  Matthew W Self,et al.  Different glutamate receptors convey feedforward and recurrent processing in macaque V1 , 2012, Proceedings of the National Academy of Sciences.

[102]  S. Funahashi,et al.  Thalamic mediodorsal nucleus and working memory , 2012, Neuroscience & Biobehavioral Reviews.

[103]  A. Agmon,et al.  Short-Term Plasticity of Unitary Inhibitory-to-Inhibitory Synapses Depends on the Presynaptic Interneuron Subtype , 2012, The Journal of Neuroscience.

[104]  M. Baxter,et al.  Cholinergic modulation of a specific memory function of prefrontal cortex , 2011, Nature Neuroscience.

[105]  Gustavo Deco,et al.  Role of local network oscillations in resting-state functional connectivity , 2011, NeuroImage.

[106]  Tatiana A. Engel,et al.  Same or Different? A Neural Circuit Mechanism of Similarity-Based Pattern Match Decision Making , 2011, The Journal of Neuroscience.

[107]  T. Moore,et al.  CONTROL OF VISUAL CORTICAL SIGNALS BY PREFRONTAL DOPAMINE , 2011, Nature.

[108]  J. Kaas,et al.  Neuron densities vary across and within cortical areas in primates , 2010, Proceedings of the National Academy of Sciences.

[109]  Philip K. McGuire,et al.  The test–retest reliability of 18F-DOPA PET in assessing striatal and extrastriatal presynaptic dopaminergic function , 2010, NeuroImage.

[110]  M. D’Esposito,et al.  Is the rostro-caudal axis of the frontal lobe hierarchical? , 2009, Nature Reviews Neuroscience.

[111]  T. Robbins,et al.  The neuropsychopharmacology of fronto-executive function: monoaminergic modulation. , 2009, Annual review of neuroscience.

[112]  Mark T. Harnett,et al.  Burst-Timing-Dependent Plasticity of NMDA Receptor-Mediated Transmission in Midbrain Dopamine Neurons , 2009, Neuron.

[113]  B. Sakmann,et al.  Neuronal correlates of local, lateral, and translaminar inhibition with reference to cortical columns. , 2009, Cerebral cortex.

[114]  L. Abbott,et al.  Hyperpolarization-activated cation channels inhibit EPSPs by interactions with M-type K+ channels , 2009, Nature Neuroscience.

[115]  K. Svoboda,et al.  The subcellular organization of neocortical excitatory connections , 2009, Nature.

[116]  Wenjun Gao,et al.  Cell-type Specific Development of NMDA Receptors in the Interneurons of Rat Prefrontal Cortex , 2009, Neuropsychopharmacology.

[117]  J. Schall,et al.  Visual and Motor Connectivity and the Distribution of Calcium-Binding Proteins in Macaque Frontal Eye Field: Implications for Saccade Target Selection , 2009, Front. Neuroanat..

[118]  M. Tsodyks,et al.  Synaptic Theory of Working Memory , 2008, Science.

[119]  Robert Desimone,et al.  Top–Down Attentional Deficits in Macaques with Lesions of Lateral Prefrontal Cortex , 2007, The Journal of Neuroscience.

[120]  M. Poo,et al.  Spike-Timing-Dependent Plasticity of Neocortical Excitatory Synapses on Inhibitory Interneurons Depends on Target Cell Type , 2007, The Journal of Neuroscience.

[121]  Xiao-Jing Wang,et al.  An Integrated Microcircuit Model of Attentional Processing in the Neocortex , 2007, The Journal of Neuroscience.

[122]  Olaf Sporns,et al.  Network structure of cerebral cortex shapes functional connectivity on multiple time scales , 2007, Proceedings of the National Academy of Sciences.

[123]  H. Markram,et al.  Disynaptic Inhibition between Neocortical Pyramidal Cells Mediated by Martinotti Cells , 2007, Neuron.

[124]  Graham V. Williams,et al.  Inverted-U dopamine D1 receptor actions on prefrontal neurons engaged in working memory , 2007, Nature Neuroscience.

[125]  Xiao-Jing Wang,et al.  A Biophysically Based Neural Model of Matching Law Behavior: Melioration by Stochastic Synapses , 2006, The Journal of Neuroscience.

[126]  Xiao-Jing Wang,et al.  A Recurrent Network Mechanism of Time Integration in Perceptual Decisions , 2006, The Journal of Neuroscience.

[127]  Charles R. Yang,et al.  Targeting Prefrontal Cortical Dopamine D1 and N-Methyl-D-Aspartate Receptor Interactions in Schizophrenia Treatment , 2005, The Neuroscientist : a review journal bringing neurobiology, neurology and psychiatry.

[128]  H. Markram,et al.  The neocortical microcircuit as a tabula rasa. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[129]  S. Funahashi,et al.  Population vector analysis of primate prefrontal activity during spatial working memory. , 2004, Cerebral cortex.

[130]  H. Markram,et al.  Anatomical, physiological and molecular properties of Martinotti cells in the somatosensory cortex of the juvenile rat , 2004, The Journal of physiology.

[131]  P. Goldman-Rakic,et al.  Division of labor among distinct subtypes of inhibitory neurons in a cortical microcircuit of working memory. , 2004, Proceedings of the National Academy of Sciences of the United States of America.

[132]  D. Prince,et al.  Major Differences in Inhibitory Synaptic Transmission onto Two Neocortical Interneuron Subclasses , 2003, The Journal of Neuroscience.

[133]  P. Goldman-Rakic,et al.  Dopamine Modulation of Perisomatic and Peridendritic Inhibition in Prefrontal Cortex , 2003, The Journal of Neuroscience.

[134]  Emilio Salinas,et al.  Cognitive neuroscience: Flutter Discrimination: neural codes, perception, memory and decision making , 2003, Nature Reviews Neuroscience.

[135]  R. V. Van Heertum,et al.  Prefrontal Dopamine D1 Receptors and Working Memory in Schizophrenia , 2002, The Journal of Neuroscience.

[136]  G. Elston,et al.  The human temporal cortex: characterization of neurons expressing nitric oxide synthase, neuropeptides and calcium-binding proteins, and their glutamate receptor subunit profiles. , 2001, Cerebral cortex.

[137]  Xiao-Jing Wang Synaptic reverberation underlying mnemonic persistent activity , 2001, Trends in Neurosciences.

[138]  Y. Hurd,et al.  D1 and D2 dopamine receptor mRNA expression in whole hemisphere sections of the human brain , 2001, Journal of Chemical Neuroanatomy.

[139]  T. Sejnowski,et al.  Dopamine D1/D5 receptor modulation of excitatory synaptic inputs to layer V prefrontal cortex neurons. , 2001, Proceedings of the National Academy of Sciences of the United States of America.

[140]  H. Kennedy,et al.  Laminar Distribution of Neurons in Extrastriate Areas Projecting to Visual Areas V1 and V4 Correlates with the Hierarchical Rank and Indicates the Operation of a Distance Rule , 2000, The Journal of Neuroscience.

[141]  S. Nelson,et al.  Multiple forms of short-term plasticity at excitatory synapses in rat medial prefrontal cortex. , 2000, Journal of neurophysiology.

[142]  P. Goldman-Rakic,et al.  Inactivation of parietal and prefrontal cortex reveals interdependence of neural activity during memory-guided saccades. , 2000, Journal of neurophysiology.

[143]  X. Wang,et al.  Synaptic Basis of Cortical Persistent Activity: the Importance of NMDA Receptors to Working Memory , 1999, The Journal of Neuroscience.

[144]  Shoji Tanaka,et al.  Architecture and dynamics of the primate prefrontal cortical circuit for spatial working memory , 1999, Neural Networks.

[145]  R. Romo,et al.  Neuronal correlates of parametric working memory in the prefrontal cortex , 1999, Nature.

[146]  J. Kaas,et al.  Cortical connections of the dorsomedial visual area in Old World macaque monkeys , 1999, The Journal of comparative neurology.

[147]  W. Schultz Predictive reward signal of dopamine neurons. , 1998, Journal of neurophysiology.

[148]  H. Markram,et al.  Physiology and anatomy of synaptic connections between thick tufted pyramidal neurones in the developing rat neocortex. , 1997, The Journal of physiology.

[149]  Paul Leonard Gabbott,et al.  Vasoactive intestinal polypeptide containing neurones in monkey medial prefrontal cortex (mPFC): colocalisation with calretinin , 1997, Brain Research.

[150]  Y. Kawaguchi Physiological subgroups of nonpyramidal cells with specific morphological characteristics in layer II/III of rat frontal cortex , 1995, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[151]  P. Goldman-Rakic Cellular basis of working memory , 1995, Neuron.

[152]  Bao-Ming Li,et al.  Delayed-response deficit induced by local injection of the alpha 2-adrenergic antagonist yohimbine into the dorsolateral prefrontal cortex in young adult monkeys. , 1994, Behavioral and neural biology.

[153]  W. Schultz,et al.  Responses of monkey dopamine neurons to reward and conditioned stimuli during successive steps of learning a delayed response task , 1993, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[154]  Y. Kawaguchi,et al.  Groupings of nonpyramidal and pyramidal cells with specific physiological and morphological characteristics in rat frontal cortex. , 1993, Journal of neurophysiology.

[155]  P. Goldman-Rakic,et al.  Distribution of dopaminergic receptors in the primate cerebral cortex: Quantitative autoradiographic analysis using [3H]raclopride, [3H]spiperone and [3H]SCH23390 , 1991, Neuroscience.

[156]  P. Goldman-Rakic,et al.  Myelo‐ and cytoarchitecture of the granular frontal cortex and surrounding regions in the strepsirhine primate Galago and the anthropoid primate Macaca , 1991, The Journal of comparative neurology.

[157]  P. Goldman-Rakic,et al.  Overlap of dopaminergic, adrenergic, and serotoninergic receptors and complementarity of their subtypes in primate prefrontal cortex , 1990, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[158]  E. G. Jones,et al.  Synapses of double bouquet cells in monkey cerebral cortex visualized by calbindin immunoreactivity , 1989, Brain Research.

[159]  P. Goldman-Rakic,et al.  Posterior parietal cortex in rhesus monkey: I. Parcellation of areas based on distinctive limbic and sensory corticocortical connections , 1989, The Journal of comparative neurology.

[160]  E. Richfield,et al.  Comparative distributions of dopamine D‐1 and D‐2 receptors in the cerebral cortex of rats, cats, and monkeys , 1989, The Journal of comparative neurology.

[161]  P. Goldman-Rakic,et al.  Mnemonic coding of visual space in the monkey's dorsolateral prefrontal cortex. , 1989, Journal of neurophysiology.

[162]  P. Turner Biochemistry and the Central Nervous System , 1986 .

[163]  P. Emson,et al.  Morphology, distribution, and synaptic relations of somatostatin- and neuropeptide Y-immunoreactive neurons in rat and monkey neocortex , 1984, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[164]  B. Merker Silver staining of cell bodies by means of physical development , 1983, Journal of Neuroscience Methods.

[165]  H. E. Rosvold,et al.  Cognitive deficit caused by regional depletion of dopamine in prefrontal cortex of rhesus monkey. , 1979, Science.

[166]  D. Pandya,et al.  Afferent cortical connections and architectonics of the superior temporal sulcus and surrounding cortex in the rhesus monkey , 1978, Brain Research.

[167]  G. E. Alexander,et al.  Neuron Activity Related to Short-Term Memory , 1971, Science.

[168]  Karl Zilles,et al.  Cyto- and receptor architectonic mapping of the human brain. , 2018, Handbook of clinical neurology.

[169]  Jacinto José Fonseca Pereira,et al.  Computational modeling of prefrontal cortex circuits , 2014 .

[170]  A. Thomson,et al.  Synaptic a 5 Subunit--Containing GABA A Receptors Mediate IPSPs Elicited by Dendrite-Preferring Cells in Rat Neocortex , 2008 .

[171]  G. Elston Specialization of the Neocortical Pyramidal Cell during Primate Evolution , 2007 .

[172]  Jonathan D. Cohen,et al.  On the Control of Control: The Role of Dopamine in Regulating Prefrontal Function and Working Memory , 2007 .

[173]  Nava Rubin,et al.  Dynamical characteristics common to neuronal competition models. , 2007, Journal of neurophysiology.

[174]  Frances S. Chance,et al.  Drivers and modulators from push-pull and balanced synaptic input. , 2005, Progress in brain research.

[175]  Michael J. Frank,et al.  Dynamic Dopamine Modulation in the Basal Ganglia: A Neurocomputational Account of Cognitive Deficits in Medicated and Nonmedicated Parkinsonism , 2005, Journal of Cognitive Neuroscience.

[176]  Xiao-Jing Wang,et al.  Spike-Frequency Adaptation of a Generalized Leaky Integrate-and-Fire Model Neuron , 2004, Journal of Computational Neuroscience.

[177]  Carson C. Chow,et al.  A Spiking Neuron Model for Binocular Rivalry , 2004, Journal of Computational Neuroscience.

[178]  Xiao-Jing Wang,et al.  Effects of Neuromodulation in a Cortical Network Model of Object Working Memory Dominated by Recurrent Inhibition , 2004, Journal of Computational Neuroscience.

[179]  S. Stone-Elander,et al.  Stereoselective binding of 11C-raclopride in living human brain — a search for extrastriatal central D2-dopamine receptors by PET , 2004, Psychopharmacology.

[180]  A. Schleicher,et al.  21 – Quantitative Analysis of Cyto- and Receptor Architecture of the Human Brain , 2002 .

[181]  K. Svoboda,et al.  Structure and function of dendritic spines. , 2002, Annual review of physiology.

[182]  A. Arnsten Through the Looking Glass: Differential Noradenergic Modulation of Prefrontal Cortical Function , 2000, Neural plasticity.

[183]  D. J. Felleman,et al.  Distributed hierarchical processing in the primate cerebral cortex. , 1991, Cerebral cortex.

[184]  F. Gallyas Silver staining of myelin by means of physical development. , 1979, Neurological research.

[185]  D. Albe-Fessard,et al.  The Somatosensory system , 1975 .

[186]  Ajay N. Jain,et al.  E.: “A Summary of , 1968 .

[187]  F. Sanides Die Architektonik des menschlichen Stirnhirns : zugleich eine darstellung der Prinzipien seiner Gestaltung als Spiegel der Stammesgeschichtlichen Differenzierung der Grosshirnrinde , 1962 .

[188]  F. Sanides Die Architektonik des Menschlichen Stirnhirns , 1962 .

[189]  Gustavo Deco,et al.  Human Neuroscience Original Research Article Cortical Microcircuit Dynamics Mediating Binocular Rivalry: the Role of Adaptation in Inhibition , 2022 .

[190]  H. Sompolinsky,et al.  13 Modeling Feature Selectivity in Local Cortical Circuits , 2022 .

[191]  T. Vogels,et al.  Neuroscience and Biobehavioral Reviews Neural mechanisms of attending to items in working memory , 2022 .

[192]  A. Compte,et al.  Pinging reveals active, not silent, working memories , 2022 .