Smoothed analysis of probabilistic roadmaps

The probabilistic roadmap algorithm is a leading heuristic for robot motion planning. It is extremely efficient in practice, yet its worst case convergence time is unbounded as a function of the input's combinatorial complexity. We prove a smoothed polynomial upper bound on the number of samples required to produce an accurate probabilistic roadmap, and thus on the running time of the algorithm, in an environment of simplices. This sheds light on its widespread empirical success.

[1]  Lydia E. Kavraki,et al.  Capturing the Connectivity of High-Dimensional Geometric Spaces by Parallelizable Random Sampling Techniques , 1998, IPPS/SPDP Workshops.

[2]  Jean-Claude Latombe,et al.  On the Probabilistic Foundations of Probabilistic Roadmap Planning , 2006, Int. J. Robotics Res..

[3]  Kenneth L. Clarkson,et al.  Nearest Neighbor Queries in Metric Spaces , 1997, STOC '97.

[4]  Lydia E. Kavraki,et al.  Probabilistic Roadmaps for Robot Path Planning , 1998 .

[5]  B. Faverjon,et al.  Probabilistic Roadmaps for Path Planning in High-Dimensional Con(cid:12)guration Spaces , 1996 .

[6]  Jean-Claude Latombe,et al.  Robot motion planning , 1970, The Kluwer international series in engineering and computer science.

[7]  Nancy M. Amato,et al.  A general framework for PRM motion planning , 2003, 2003 IEEE International Conference on Robotics and Automation (Cat. No.03CH37422).

[8]  Rajeev Motwani,et al.  Randomized Algorithms , 1995, SIGA.

[9]  Christian Sohler,et al.  Smoothed number of extreme points under uniform noise , 2004 .

[10]  Shang-Hua Teng,et al.  Smoothed analysis of termination of linear programming algorithms , 2003, Math. Program..

[11]  Vladlen Koltun Almost tight upper bounds for lower envelopes in higher dimensions , 1993, Proceedings of 1993 IEEE 34th Annual Foundations of Computer Science.

[12]  Lydia E. Kavraki,et al.  Analysis of probabilistic roadmaps for path planning , 1998, IEEE Trans. Robotics Autom..

[13]  Otfried Cheong,et al.  Range Searching in Low-Density Environments , 1996, Inf. Process. Lett..

[14]  Mark de Berg,et al.  Sparse Arrangements and the Number of Views of Polyhedral Scenes , 1997, Int. J. Comput. Geom. Appl..

[15]  G. Pisier The volume of convex bodies and Banach space geometry , 1989 .

[16]  Sergei Vassilvitskii,et al.  Worst-case and Smoothed Analysis of the ICP Algorithm, with an Application to the k-means Method , 2006, 2006 47th Annual IEEE Symposium on Foundations of Computer Science (FOCS'06).

[17]  Panos M. Pardalos,et al.  Advances in Randomized Parallel Computing , 2011 .

[18]  Kurt Mehlhorn,et al.  Smoothed Analysis of Three Combinatorial Problems , 2003, MFCS.

[19]  Mark H. Overmars,et al.  A Comparative Study of Probabilistic Roadmap Planners , 2002, WAFR.

[20]  Friedhelm Meyer auf der Heide,et al.  Smoothed Motion Complexity , 2003, ESA.

[21]  Rajeev Motwani,et al.  Path Planning in Expansive Configuration Spaces , 1999, Int. J. Comput. Geom. Appl..

[22]  Shang-Hua Teng,et al.  Smoothed analysis of algorithms: why the simplex algorithm usually takes polynomial time , 2001, STOC '01.

[23]  Mark de Berg,et al.  Realistic input models for geometric algorithms , 1997, SCG '97.

[24]  D Teng Smoothed Analysis of Algorithms , 2002 .

[25]  John Dunagan,et al.  Smoothed analysis of the perceptron algorithm for linear programming , 2002, SODA '02.

[26]  Leonidas J. Guibas,et al.  A Singly Exponential Stratification Scheme for Real Semi-Algebraic Varieties and its Applications , 1991, Theor. Comput. Sci..

[27]  Mark H. Overmars,et al.  Motion planning amidst fat obstacles (extended abstract) , 1994, SCG '94.

[28]  Marc Levoy,et al.  The digital Michelangelo project: 3D scanning of large statues , 2000, SIGGRAPH.

[29]  Micha Sharir,et al.  Castles in the air revisited , 1992, SCG '92.

[30]  Angel P. del Pobil,et al.  Practical Motion Planning in Robotics: Current Approaches and Future Directions , 1998 .

[31]  Lydia E. Kavraki,et al.  A Random Sampling Scheme for Path Planning , 1997, Int. J. Robotics Res..

[32]  Mark H. Overmars,et al.  Range Searching and Point Location among Fat Objects , 1994, J. Algorithms.

[33]  Lydia E. Kavraki,et al.  Randomized query processing in robot path planning , 1995, STOC '95.

[34]  Mark H. Overmars,et al.  Dynamic motion planning in low obstacle density environments , 1998, Comput. Geom..

[35]  Mark de Berg,et al.  Linear Size Binary Space Partitions for Uncluttered Scenes , 2000, Algorithmica.

[36]  Christian Sohler,et al.  Extreme Points Under Random Noise , 2004, ESA.

[37]  Joseph O'Rourke,et al.  Handbook of Discrete and Computational Geometry, Second Edition , 1997 .

[38]  David E. Cardoze,et al.  Pattern matching for spatial point sets , 1998, Proceedings 39th Annual Symposium on Foundations of Computer Science (Cat. No.98CB36280).

[39]  A. Frank van der Stappen,et al.  Motion planning amidst fat obstacles , 1993 .

[40]  Micha Sharir,et al.  Algorithmic motion planning , 2004, Handbook of Discrete and Computational Geometry, 2nd Ed..

[41]  Jeff Erickson,et al.  Nice Point Sets Can Have Nasty Delaunay Triangulations , 2001, SCG '01.

[42]  Piotr Indyk,et al.  Geometric pattern matching: a performance study , 1999, SCG '99.

[43]  Mark de Berg,et al.  Linear Size Binary Space Partitions for Fat Objects , 1995, ESA.

[44]  Daniel A. Spielman,et al.  Improved smoothed analysis of the shadow vertex simplex method , 2005, 46th Annual IEEE Symposium on Foundations of Computer Science (FOCS'05).

[45]  Micha Sharir,et al.  Computing Depth Orders for Fat Objects and Related Problems , 1995, Comput. Geom..