Do We Really Need Robust and Alternative Inference Methods for Brain MRI?

Voxel-wise statistical inference lies at the heart of quantitative multi-modal brain imaging. The general linear model with its fixed and mixed effects formulations has been the workhorse of empirical neuroscience for both structural and functional brain assessment. Yet, the validity of estimated p-values hinges upon assumptions of Gaussian distributed errors. Inference approaches based on relaxed distributional assumptions (e.g., non-parametric, robust) have been available in the statistical community for decades. Recently, there has been renewed interest in applying these methods in medical imaging. Despite theoretically attractive behavior, relaxing Gaussian assumptions comes at the practical cost of reduced power (when Gaussian assumptions are met), increased computational complexity, and limited community support. We discuss the challenges of applying robust and alternative statistical methods to medical imaging inference, characterize the conditions under which such approaches are necessary, and present a new quantitative framework to empirically justify selection of inference methods.

[1]  Ying Nian Wu,et al.  Efficient Algorithms for Robust Estimation in Linear Mixed-Effects Models Using the Multivariate t Distribution , 2001 .

[2]  Bennett A Landman,et al.  Assessment of bias in experimentally measured diffusion tensor imaging parameters using SIMEX , 2013, Magnetic resonance in medicine.

[3]  Polina Golland,et al.  Search for patterns of functional specificity in the brain: A nonparametric hierarchical Bayesian model for group fMRI data , 2011, NeuroImage.

[4]  P. J. Jennings,et al.  Time series analysis in the time domain and resampling methods for studies of functional magnetic resonance brain imaging , 1997, Human brain mapping.

[5]  Susan M. Resnick,et al.  Biological parametric mapping accounting for random regressors with regression calibration and model II regression , 2012, NeuroImage.

[6]  M. Lustig,et al.  Compressed Sensing MRI , 2008, IEEE Signal Processing Magazine.

[7]  Mark Jenkinson,et al.  Non-local Shape Descriptor: A New Similarity Metric for Deformable Multi-modal Registration , 2011, MICCAI.

[8]  Peter J. Huber,et al.  John W. Tukey's contributions to robust statistics , 2002 .

[9]  Thomas E. Nichols,et al.  Nonparametric permutation tests for functional neuroimaging: A primer with examples , 2002, Human brain mapping.

[10]  Thomas E. Nichols,et al.  Diagnosis and exploration of massively univariate neuroimaging models , 2003, NeuroImage.

[11]  Karl J. Friston,et al.  Statistical parametric mapping , 2013 .

[12]  P S Gill A robust mixed linear model analysis for longitudinal data. , 2000, Statistics in medicine.

[13]  Susan M. Resnick,et al.  Robust biological parametric mapping: an improved technique for multimodal brain image analysis , 2011, Medical Imaging.

[14]  Bertrand Thirion,et al.  Robust statistics for nonparametric group analysis in fMRI , 2006, 3rd IEEE International Symposium on Biomedical Imaging: Nano to Macro, 2006..

[15]  Xue Yang,et al.  Accounting for Random Regressors: A Unified Approach to Multi-modality Imaging , 2011, MBIA.

[16]  S. Morgenthaler Robustness in Statistics , 2001 .

[17]  Susan M. Resnick,et al.  Biological parametric mapping with robust and non-parametric statistics , 2011, NeuroImage.

[18]  Karl J. Friston,et al.  Mixed-effects and fMRI studies , 2005, NeuroImage.

[19]  Rainer Goebel,et al.  BrainVoyager — Past, present, future , 2012, NeuroImage.

[20]  Bennett A. Landman,et al.  Assessment of Bias for MRI Diffusion Tensor Imaging Using SIMEX , 2011, MICCAI.

[21]  Peter J. Huber,et al.  Robust Statistics , 2005, Wiley Series in Probability and Statistics.

[22]  F. Bowman,et al.  Spatiotemporal Models for Region of Interest Analyses of Functional Neuroimaging Data , 2007 .

[23]  Garry E. Gold Clinical Protocol Challenges in MSK High Field (3T and 7T) , 2011 .

[24]  Lars Kai Hansen,et al.  A spatially robust ICA algorithm for multiple fMRI data sets , 2002, Proceedings IEEE International Symposium on Biomedical Imaging.

[25]  Min Chen,et al.  Multi-parametric neuroimaging reproducibility: A 3-T resource study , 2011, NeuroImage.

[26]  Jerry L. Prince,et al.  Effects of diffusion weighting schemes on the reproducibility of DTI-derived fractional anisotropy, mean diffusivity, and principal eigenvector measurements at 1.5T , 2007, NeuroImage.

[27]  F. Nolte,et al.  Selective buffered charcoal-yeast extract medium for isolation of nocardiae from mixed cultures , 1992, Journal of clinical microbiology.

[28]  P. Matthews,et al.  Neuroimaging: Applications of fMRI in translational medicine and clinical practice , 2006, Nature Reviews Neuroscience.

[29]  Karl J. Friston,et al.  Statistical parametric mapping , 2013 .

[30]  Mark W. Woolrich,et al.  Advances in functional and structural MR image analysis and implementation as FSL , 2004, NeuroImage.

[31]  Polina Golland,et al.  Nonparametric hierarchical Bayesian model for functional brain parcellation , 2010, 2010 IEEE Computer Society Conference on Computer Vision and Pattern Recognition - Workshops.

[32]  Alan C. Evans,et al.  A General Statistical Analysis for fMRI Data , 2000, NeuroImage.

[33]  Nicole M. Long,et al.  Journal of the American Statistical Association Spatio-spectral Mixed-effects Model for Functional Magnetic Resonance Imaging Data Spatio-spectral Mixed-effects Model for Functional Magnetic Resonance Imaging Data , 2022 .

[34]  Yasumasa Matsuda,et al.  A Spatio-temporal Regression Model for the Analysis of Functional MRI Data , 2002, NeuroImage.

[35]  J E Dalton,et al.  Diagnostic errors using the Short Portable Mental Status Questionnaire with a mixed clinical population. , 1987, Journal of gerontology.

[36]  Brian Caffo,et al.  A Bayesian hierarchical framework for spatial modeling of fMRI data , 2008, NeuroImage.

[37]  Xue Yang,et al.  Quantitative Evaluation of Statistical Inference in Resting State Functional MRI , 2012, MICCAI.

[38]  Martin A. Lindquist,et al.  Adaptive spatial smoothing of fMRI images , 2010 .

[39]  Christopher R. Genovese,et al.  A Bayesian Time-Course Model for Functional Magnetic Resonance Imaging Data , 2000 .

[40]  Gang Chen,et al.  Functional imaging analysis contest (FIAC) analysis according to AFNI and SUMA , 2006, Human brain mapping.

[41]  I E Leppik,et al.  Pharmacokinetics of Felbamate, a Novel Antiepileptic Drug: Application of Mixed‐Effect Modeling to Clinical Trials , 1989, Pharmacotherapy.

[42]  William M. Wells,et al.  Medical Image Computing and Computer-Assisted Intervention — MICCAI’98 , 1998, Lecture Notes in Computer Science.

[43]  E. Bullmore,et al.  Statistical methods of estimation and inference for functional MR image analysis , 1996, Magnetic resonance in medicine.

[44]  F Dubois Bowman,et al.  Spatio-temporal modeling of localized brain activity. , 2005, Biostatistics.

[45]  R. Goebel,et al.  7T vs. 4T: RF power, homogeneity, and signal‐to‐noise comparison in head images , 2001, Magnetic resonance in medicine.

[46]  Scott L. Zeger,et al.  Non‐linear Fourier Time Series Analysis for Human Brain Mapping by Functional Magnetic Resonance Imaging , 1997 .

[47]  B. Huber,et al.  Mouse mixed lymphocyte reactions and cell-mediated lympholysis: genetic control and relevance to antigenic strength. , 1973, Transplantation proceedings.

[48]  Jörn Diedrichsen,et al.  Detecting and adjusting for artifacts in fMRI time series data , 2005, NeuroImage.

[49]  Karl J. Friston,et al.  Statistical parametric maps in functional imaging: A general linear approach , 1994 .

[50]  Xi-Nian Zuo,et al.  REST: A Toolkit for Resting-State Functional Magnetic Resonance Imaging Data Processing , 2011, PloS one.

[51]  Karl J. Friston,et al.  Classical and Bayesian Inference in Neuroimaging: Theory , 2002, NeuroImage.

[52]  P. Holland,et al.  Robust regression using iteratively reweighted least-squares , 1977 .

[53]  Karl J. Friston,et al.  Analysis of fMRI Time-Series Revisited—Again , 1995, NeuroImage.

[54]  Xue Yang,et al.  A comparison of distributional considerations with statistical analysis of resting state fMRI at 3T and 7T , 2012, Medical Imaging.

[55]  Michael Unser,et al.  Statistical analysis of functional MRI data in the wavelet domain , 1998, IEEE Transactions on Medical Imaging.

[56]  Raymond J. Carroll,et al.  Measurement error in nonlinear models: a modern perspective , 2006 .

[57]  B. Biswal,et al.  The resting brain: unconstrained yet reliable. , 2009, Cerebral cortex.

[58]  John C Gore,et al.  Task demand modulation of steady‐state functional connectivity to primary motor cortex , 2007, Human brain mapping.

[59]  Hernando Ombao,et al.  SPATIO-SPECTRAL ANALYSIS OF BRAIN SIGNALS , 2008 .