First-Order Algorithms for Nonlinear Generalized Nash Equilibrium Problems

We consider the problem of computing an equilibrium in a class of \textit{nonlinear generalized Nash equilibrium problems (NGNEPs)} in which the strategy sets for each player are defined by equality and inequality constraints that may depend on the choices of rival players. While the asymptotic global convergence and local convergence rates of algorithms to solve this problem have been extensively investigated, the analysis of nonasymptotic iteration complexity is still in its infancy. This paper presents two first-order algorithms -- based on the quadratic penalty method (QPM) and augmented Lagrangian method (ALM), respectively -- with an accelerated mirror-prox algorithm as the solver in each inner loop. We establish a global convergence guarantee for solving monotone and strongly monotone NGNEPs and provide nonasymptotic complexity bounds expressed in terms of the number of gradient evaluations. Experimental results demonstrate the efficiency of our algorithms in practice.

[1]  Ioannis Panageas,et al.  Efficiently Computing Nash Equilibria in Adversarial Team Markov Games , 2022, ICLR.

[2]  Marco Ciccone,et al.  A Marriage between Adversarial Team Games and 2-player Games: Enabling Abstractions, No-regret Learning, and Subgame Solving , 2022, ICML.

[3]  Guanghui Lan,et al.  Simple and optimal methods for stochastic variational inequalities, I: operator extrapolation , 2020, SIAM J. Optim..

[4]  Sergio Grammatico,et al.  Stochastic generalized Nash equilibrium seeking under partial-decision information , 2020, Autom..

[5]  Sergio Grammatico,et al.  Fast generalized Nash equilibrium seeking under partial-decision information , 2020, Automatica.

[6]  Jong-Shi Pang,et al.  Exact Penalization of Generalized Nash Equilibrium Problems , 2018, Oper. Res..

[7]  Yangyang Xu,et al.  Lower complexity bounds of first-order methods for convex-concave bilinear saddle-point problems , 2018, Math. Program..

[8]  Tuomas Sandholm,et al.  Connecting Optimal Ex-Ante Collusion in Teams to Extensive-Form Correlation: Faster Algorithms and Positive Complexity Results , 2021, ICML.

[9]  Jelena Diakonikolas Halpern Iteration for Near-Optimal and Parameter-Free Monotone Inclusion and Strong Solutions to Variational Inequalities , 2020, COLT.

[10]  Nicola Gatti,et al.  Coordination in Adversarial Sequential Team Games via Multi-Agent Deep Reinforcement Learning , 2019, ArXiv.

[11]  Maged Dessouky,et al.  A general equilibrium model for transportation systems with e-hailing services and flow congestion , 2019, Transportation Research Part B: Methodological.

[12]  Yangyang Xu Iteration complexity of inexact augmented Lagrangian methods for constrained convex programming , 2019, Mathematical Programming.

[13]  Gabriel Haeser,et al.  Optimality Conditions and Constraint Qualifications for Generalized Nash Equilibrium Problems and Their Practical Implications , 2019, SIAM J. Optim..

[14]  Zhengyuan Zhou,et al.  Learning in games with continuous action sets and unknown payoff functions , 2016, Mathematical Programming.

[15]  Shiqian Ma,et al.  Structured nonconvex and nonsmooth optimization: algorithms and iteration complexity analysis , 2016, Computational Optimization and Applications.

[16]  Ion Necoara,et al.  Complexity of first-order inexact Lagrangian and penalty methods for conic convex programming , 2015, Optim. Methods Softw..

[17]  Oliver Stein,et al.  The noncooperative transportation problem and linear generalized Nash games , 2018, Eur. J. Oper. Res..

[18]  Christian Kanzow,et al.  Augmented Lagrangian and exact penalty methods for quasi-variational inequalities , 2018, Comput. Optim. Appl..

[19]  Marco Sciandrone,et al.  A nonmonotone trust-region method for generalized Nash equilibrium and related problems with strong convergence properties , 2018, Comput. Optim. Appl..

[20]  Nicola Gatti,et al.  Computational Results for Extensive-Form Adversarial Team Games , 2017, AAAI.

[21]  Axel Dreves,et al.  Computing all solutions of linear generalized Nash equilibrium problems , 2017, Math. Methods Oper. Res..

[22]  Yunmei Chen,et al.  Accelerated schemes for a class of variational inequalities , 2014, Mathematical Programming.

[23]  Danilo Ardagna,et al.  Generalized Nash Equilibria for the Service Provisioning Problem in Multi-Cloud Systems , 2017, IEEE Transactions on Services Computing.

[24]  Christian Kanzow,et al.  On the multiplier-penalty-approach for quasi-variational inequalities , 2016, Math. Program..

[25]  Christian Kanzow,et al.  Augmented Lagrangian Methods for the Solution of Generalized Nash Equilibrium Problems , 2016, SIAM J. Optim..

[26]  Andreas Fischer,et al.  A Globally Convergent LP-Newton Method , 2016, SIAM J. Optim..

[27]  Axel Dreves,et al.  Solving linear generalized Nash equilibrium problems numerically , 2016, Optim. Methods Softw..

[28]  Oliver Stein,et al.  The Cone Condition and Nonsmoothness in Linear Generalized Nash Games , 2016, J. Optim. Theory Appl..

[29]  José Mario Martínez,et al.  A Cone-Continuity Constraint Qualification and Algorithmic Consequences , 2016, SIAM J. Optim..

[30]  Renato D. C. Monteiro,et al.  Iteration-complexity of first-order augmented Lagrangian methods for convex programming , 2015, Mathematical Programming.

[31]  Francisco Facchinei,et al.  The semismooth Newton method for the solution of quasi-variational inequalities , 2015, Comput. Optim. Appl..

[32]  Yu. V. Malitsky,et al.  Projected Reflected Gradient Methods for Monotone Variational Inequalities , 2015, SIAM J. Optim..

[33]  Andreas Fischer,et al.  GENERALIZED NASH EQUILIBRIUM PROBLEMS - RECENT ADVANCES AND CHALLENGES , 2014 .

[34]  Alexey F. Izmailov,et al.  On error bounds and Newton-type methods for generalized Nash equilibrium problems , 2014, Comput. Optim. Appl..

[35]  Francisco Facchinei,et al.  An LP-Newton method: nonsmooth equations, KKT systems, and nonisolated solutions , 2013, Mathematical Programming.

[36]  W. Karush Minima of Functions of Several Variables with Inequalities as Side Conditions , 2014 .

[37]  Jong-Shi Pang,et al.  On the solution of affine generalized Nash equilibrium problems with shared constraints by Lemke’s method , 2013, Math. Program..

[38]  Masao Fukushima,et al.  A globalized Newton method for the computation of normalized Nash equilibria , 2013, J. Glob. Optim..

[39]  Renato D. C. Monteiro,et al.  Iteration-complexity of first-order penalty methods for convex programming , 2013, Math. Program..

[40]  Francisco Facchinei,et al.  Modern Optimization Modelling Techniques , 2012, Advanced courses in mathematics : CRM Barcelona.

[41]  Tobias Scheffer,et al.  Static prediction games for adversarial learning problems , 2012, J. Mach. Learn. Res..

[42]  Zhu Han,et al.  Game Theory in Wireless and Communication Networks: Theory, Models, and Applications , 2011 .

[43]  Francisco Facchinei,et al.  On the solution of the KKT conditions of generalized Nash equilibrium problems , 2011, SIAM J. Optim..

[44]  Masao Fukushima,et al.  Restricted generalized Nash equilibria and controlled penalty algorithm , 2011, Comput. Manag. Sci..

[45]  Francisco Facchinei,et al.  Partial penalization for the solution of generalized Nash equilibrium problems , 2011, J. Glob. Optim..

[46]  Heinz H. Bauschke,et al.  Convex Analysis and Monotone Operator Theory in Hilbert Spaces , 2011, CMS Books in Mathematics.

[47]  Masao Fukushima,et al.  Parametrized variational inequality approaches to generalized Nash equilibrium problems with shared constraints , 2011, Comput. Optim. Appl..

[48]  Barbara Panicucci,et al.  A game theoretic formulation of the service provisioning problem in cloud systems , 2011, WWW.

[49]  M. Dufwenberg Game theory. , 2011, Wiley interdisciplinary reviews. Cognitive science.

[50]  Guanghui Lan,et al.  Primal-dual first-order methods with O (1/e) iteration-complexity for cone programming. , 2011 .

[51]  Necdet Serhat Aybat,et al.  A First-Order Smoothed Penalty Method for Compressed Sensing , 2011, SIAM J. Optim..

[52]  Francisco Facchinei,et al.  Penalty Methods for the Solution of Generalized Nash Equilibrium Problems , 2010, SIAM J. Optim..

[53]  Francisco Facchinei,et al.  Design of Cognitive Radio Systems Under Temperature-Interference Constraints: A Variational Inequality Approach , 2010, IEEE Transactions on Signal Processing.

[54]  Francisco Facchinei,et al.  Generalized Nash Equilibrium Problems , 2010, Ann. Oper. Res..

[55]  Tobias Scheffer,et al.  Nash Equilibria of Static Prediction Games , 2009, NIPS.

[56]  C. Kanzow,et al.  Relaxation Methods for Generalized Nash Equilibrium Problems with Inexact Line Search , 2009 .

[57]  Francisco Facchinei,et al.  Generalized Nash equilibrium problems and Newton methods , 2008, Math. Program..

[58]  Masao Fukushima,et al.  Quasi-variational inequalities, generalized Nash equilibria, and multi-leader-follower games , 2009, Comput. Manag. Sci..

[59]  A. Juditsky,et al.  Solving variational inequalities with Stochastic Mirror-Prox algorithm , 2008, 0809.0815.

[60]  Francisco Facchinei,et al.  Distributed Power Allocation With Rate Constraints in Gaussian Parallel Interference Channels , 2007, IEEE Transactions on Information Theory.

[61]  Andreas Fischer,et al.  On generalized Nash games and variational inequalities , 2007, Oper. Res. Lett..

[62]  Yurii Nesterov,et al.  Dual extrapolation and its applications to solving variational inequalities and related problems , 2003, Math. Program..

[63]  Benjamin F. Hobbs,et al.  Nash-Cournot Equilibria in Electric Power Markets with Piecewise Linear Demand Functions and Joint Constraints , 2007, Oper. Res..

[64]  Yurii Nesterov,et al.  Solving Strongly Monotone Variational and Quasi-Variational Inequalities , 2006 .

[65]  Georges Zaccour,et al.  A game-theoretic formulation of joint implementation of environmental projects , 2003, Eur. J. Oper. Res..

[66]  Jacek B. Krawczyk,et al.  Coupled constraint Nash equilibria in environmental games , 2005 .

[67]  R. Andreani,et al.  On the Relation between Constant Positive Linear Dependence Condition and Quasinormality Constraint Qualification , 2005 .

[68]  FanJin-yan,et al.  On the quadratic convergence of the Levenberg-Marquardt method without nonsingularity assumption , 2005 .

[69]  Arkadi Nemirovski,et al.  Prox-Method with Rate of Convergence O(1/t) for Variational Inequalities with Lipschitz Continuous Monotone Operators and Smooth Convex-Concave Saddle Point Problems , 2004, SIAM J. Optim..

[70]  F. Facchinei,et al.  Finite-Dimensional Variational Inequalities and Complementarity Problems , 2003 .

[71]  Arkadi Nemirovski,et al.  Lectures on modern convex optimization - analysis, algorithms, and engineering applications , 2001, MPS-SIAM series on optimization.

[72]  M. Fukushima,et al.  On the Rate of Convergence of the Levenberg-Marquardt Method , 2001 .

[73]  E. Damme,et al.  Non-Cooperative Games , 2000 .

[74]  Zengxin Wei,et al.  On the Constant Positive Linear Dependence Condition and Its Application to SQP Methods , 1999, SIAM J. Optim..

[75]  Stan Uryasev,et al.  Relaxation algorithms to find Nash equilibria with economic applications , 2000 .

[76]  Yves Smeers,et al.  Spatial Oligopolistic Electricity Models with Cournot Generators and Regulated Transmission Prices , 1999, Oper. Res..

[77]  Sjur Didrik Flåm,et al.  Equilibrium programming using proximal-like algorithms , 1997, Math. Program..

[78]  Ariel Rubinstein,et al.  A Course in Game Theory , 1995 .

[79]  Stephen M. Robinson,et al.  Shadow Prices for Measures of Effectiveness, I: Linear Model , 1993, Oper. Res..

[80]  Liqun Qi,et al.  A nonsmooth version of Newton's method , 1993, Math. Program..

[81]  S. M. Robinson,et al.  Shadow Prices for Measures of Effectiveness, II: General Model , 1993, Oper. Res..

[82]  P. Harker Generalized Nash games and quasi-variational inequalities , 1991 .

[83]  B. Kummer NEWTON's METHOD FOR NON-DIFFERENTIABLE FUNCTIONS , 1988, Advances in Mathematical Optimization.

[84]  J. S. Pang,et al.  The Generalized Quasi-Variational Inequality Problem , 1982, Math. Oper. Res..

[85]  R. Tyrrell Rockafellar,et al.  Augmented Lagrangians and Applications of the Proximal Point Algorithm in Convex Programming , 1976, Math. Oper. Res..

[86]  G. M. Korpelevich The extragradient method for finding saddle points and other problems , 1976 .

[87]  R. T. Rockafellart AUGMENTED LAGRANGIANS AND APPLICATIONS OF THE PROXIMAL POINT ALGORITHM IN CONVEX , 1976 .

[88]  D. Bertsekas ON PENALTY AND MULTIPLIER METHODS FOR CONSTRAINED MINIMIZATION , 1976 .

[89]  R. Rockafellar The multiplier method of Hestenes and Powell applied to convex programming , 1973 .

[90]  R. Tyrrell Rockafellar,et al.  A dual approach to solving nonlinear programming problems by unconstrained optimization , 1973, Math. Program..

[91]  M. Hestenes Multiplier and gradient methods , 1969 .

[92]  M. Powell A method for nonlinear constraints in minimization problems , 1969 .

[93]  O. Mangasarian,et al.  The Fritz John Necessary Optimality Conditions in the Presence of Equality and Inequality Constraints , 1967 .

[94]  D. Marquardt An Algorithm for Least-Squares Estimation of Nonlinear Parameters , 1963 .

[95]  R. H. Strotz Theory of Value: An Axiomatic Analysis of Economic Equilibrium. , 1961 .

[96]  K. Arrow,et al.  EXISTENCE OF AN EQUILIBRIUM FOR A COMPETITIVE ECONOMY , 1954 .

[97]  Gerard Debreu,et al.  A Social Equilibrium Existence Theorem* , 1952, Proceedings of the National Academy of Sciences.

[98]  J. Nash Equilibrium Points in N-Person Games. , 1950, Proceedings of the National Academy of Sciences of the United States of America.

[99]  Kenneth Levenberg A METHOD FOR THE SOLUTION OF CERTAIN NON – LINEAR PROBLEMS IN LEAST SQUARES , 1944 .

[100]  J. Farkas Theorie der einfachen Ungleichungen. , 1902 .

[101]  K. Schittkowski,et al.  NONLINEAR PROGRAMMING , 2022 .