Cook's versus Valiant's hypothesis

We first investigate the dependency of our complexity concepts on the field k. We prove that for algebraically closed fields k, the truth of Valiant’s hypothesis VP ≠ VNP depends at most on the characteristic of k.

[1]  Leslie G. Valiant,et al.  NP is as easy as detecting unique solutions , 1985, STOC '85.

[2]  Peter J. Weinberger Finding the Number of Factors of a Polynomial , 1984, J. Algorithms.

[3]  David S. Johnson,et al.  A Catalog of Complexity Classes , 1991, Handbook of Theoretical Computer Science, Volume A: Algorithms and Complexity.

[4]  Bruno Buchberger,et al.  Computer algebra symbolic and algebraic computation , 1982, SIGS.

[5]  J. Van Leeuwen,et al.  Handbook of theoretical computer science - Part A: Algorithms and complexity; Part B: Formal models and semantics , 1990 .

[6]  Leslie G. Valiant,et al.  The Complexity of Computing the Permanent , 1979, Theor. Comput. Sci..

[7]  Joachim von zur Gathen,et al.  Feasible Arithmetic Computations: Valiant's Hypothesis , 1987, J. Symb. Comput..

[8]  Leslie G. Valiant,et al.  NP is as easy as detecting unique solutions , 1985, STOC '85.

[9]  S. Smale,et al.  On a theory of computation and complexity over the real numbers; np-completeness , 1989 .

[10]  Stephen A. Cook,et al.  The complexity of theorem-proving procedures , 1971, STOC.

[11]  Leonard M. Adleman,et al.  Two theorems on random polynomial time , 1978, 19th Annual Symposium on Foundations of Computer Science (sfcs 1978).

[12]  Leslie G. Valiant,et al.  Completeness classes in algebra , 1979, STOC.

[13]  Felipe Cucker,et al.  Algebraic Settings for the Problem “P ≠ NP?” , 1998 .

[14]  Kyriakos Kalorkoti ALGEBRAIC COMPLEXITY THEORY (Grundlehren der Mathematischen Wissenschaften 315) , 1999 .

[15]  Leslie G. Valiant,et al.  Fast Parallel Computation of Polynomials Using Few Processors , 1983, SIAM J. Comput..

[16]  Leslie G. Valiant,et al.  The Complexity of Enumeration and Reliability Problems , 1979, SIAM J. Comput..

[17]  Dima Grigoriev,et al.  On the Power of Real Turing Machines Over Binary Inputs , 1997, SIAM J. Comput..

[18]  Pascal Koiran A weak version of the Blum, Shub and Smale model , 1993, Proceedings of 1993 IEEE 34th Annual Foundations of Computer Science.

[19]  Teresa Krick,et al.  UNE APPROCHE INFORMATIQUE POUR L'APPROXIMATION DIOPHANTIENNE , 1994 .

[20]  Pascal Koiran Hilbert's Nullstellensatz Is in the Polynomial Hierarchy , 1996, J. Complex..

[21]  Richard M. Karp,et al.  Parallel Algorithms for Shared-Memory Machines , 1991, Handbook of Theoretical Computer Science, Volume A: Algorithms and Complexity.

[22]  Teresa Krick,et al.  A computational method for diophantine approximation , 1996 .

[23]  Peter Bürgisser,et al.  On the Structure of Valiant's Complexity Classes , 1998, Discret. Math. Theor. Comput. Sci..

[24]  Michael Clausen,et al.  Algebraic complexity theory , 1997, Grundlehren der mathematischen Wissenschaften.

[25]  M. Mignotte Some Useful Bounds , 1983 .