Following Surgical Trajectories with Concentric Tube Robots via Nearest-Neighbor Graphs

Concentric tube robots, or CTRs, are tentacle-like robots composed of precurved telescoping tubes (Fig. 1a) and are controlled by rotating and translating each individual tube [6]. Their dexterity and small diameter enable minimally-invasive surgery in constrained areas, such as accessing the pituitary gland via the sinuses. Unfortunately, their unintuitive kinematics make manually guiding the tip while also avoiding obstacles with the entire tentacle-like shape extremely difficult [19]. This motivates a need for new user interfaces and planning algorithms.

[1]  Kamal K. Gupta,et al.  Path planning with general end-effector constraints: using task space to guide configuration space search , 2005, 2005 IEEE/RSJ International Conference on Intelligent Robots and Systems.

[2]  Luis Ibanez,et al.  The ITK Software Guide Book 1: Introduction and Development Guidelines (Volume 1) , 2015 .

[3]  David Furcy,et al.  Lifelong Planning A , 2004, Artif. Intell..

[4]  Siddhartha S. Srinivasa,et al.  The Provable Virtue of Laziness in Motion Planning , 2017, ICAPS.

[5]  Daniel Caleb Rucker,et al.  The mechanics of continuum robots: Model-based sensing and control , 2011 .

[6]  Dan Halperin,et al.  Sampling-Based Bottleneck Pathfinding with Applications to Fréchet Matching , 2016, ESA.

[7]  J. Burdick On the inverse kinematics of redundant manipulators: characterization of the self-motion manifolds , 1989 .

[8]  Siddhartha Srinivasa,et al.  Minimizing Task-Space Fréchet Error via Efficient Incremental Graph Search , 2017, IEEE Robotics and Automation Letters.

[9]  H. Mannila,et al.  Computing Discrete Fréchet Distance ∗ , 1994 .

[10]  Siddhartha S. Srinivasa,et al.  A Unifying Formalism for Shortest Path Problems with Expensive Edge Evaluations via Lazy Best-First Search over Paths with Edge Selectors , 2016, ICAPS.

[11]  P. Cochat,et al.  Et al , 2008, Archives de pediatrie : organe officiel de la Societe francaise de pediatrie.

[12]  Robert J. Webster,et al.  A motion planning approach to automatic obstacle avoidance during concentric tube robot teleoperation , 2015, 2015 IEEE International Conference on Robotics and Automation (ICRA).

[13]  Dinesh Manocha,et al.  FCL: A general purpose library for collision and proximity queries , 2012, 2012 IEEE International Conference on Robotics and Automation.

[14]  Chiranjib Bhattacharyya,et al.  Fréchet Distance Based Approach for Searching Online Handwritten Documents , 2007 .

[15]  D. Caleb Rucker,et al.  Concentric Tube Robots: The State of the Art and Future Directions , 2013, ISRR.

[16]  Charles W. Wampler,et al.  Manipulator Inverse Kinematic Solutions Based on Vector Formulations and Damped Least-Squares Methods , 1986, IEEE Transactions on Systems, Man, and Cybernetics.

[17]  Dan Halperin,et al.  Effective metrics for multi-robot motion-planning , 2018, Int. J. Robotics Res..

[18]  Kim-Fung Man,et al.  Parallel Genetic-Based Hybrid Pattern Matching Algorithm for Isolated Word Recognition , 1998, Int. J. Pattern Recognit. Artif. Intell..

[19]  D. Halperin,et al.  Effective metrics for multi-robot motion-planning , 2017, Robotics: Science and Systems.

[20]  Siddhartha S. Srinivasa,et al.  A System for Multi-step Mobile Manipulation: Architecture, Algorithms, and Experiments , 2016, ISER.

[21]  Sariel Har-Peled,et al.  The fréchet distance revisited and extended , 2012, TALG.

[22]  Siddhartha S. Srinivasa,et al.  Manipulation planning on constraint manifolds , 2009, 2009 IEEE International Conference on Robotics and Automation.