The cytochrome P 450 genesis locus : the origin and evolution of animal cytochrome P 450 s

The neighbourhoods of cytochrome P450 (CYP) genes in deuterostome genomes, as well as those of the cnidarians Nematostella vectensis and Acropora digitifera and the placozoan Trichoplax adhaerens were examined to find clues concerning the evolution of CYP genes in animals. CYP genes created by the 2R whole genome duplications in chordates have been identified. Both microsynteny and macrosynteny were used to identify genes that coexisted near CYP genes in the animal ancestor. We show that all 11 CYP clans began in a common gene environment. The evidence implies the existence of a single locus, which we term the ‘cytochrome P450 genesis locus’, where one progenitor CYP gene duplicated to create a tandem set of genes that were precursors of the 11 animal CYP clans: CYP Clans 2, 3, 4, 7, 19, 20, 26, 46, 51, 74 and mitochondrial. These early CYP genes existed side by side before the origin of cnidarians, possibly with a few additional genes interspersed. The Hox gene cluster, WNT genes, an NK gene cluster and at least one ARF gene were close neighbours to this original CYP locus. According to this evolutionary scenario, the CYP74 clan originated from animals and not from land plants nor from a common ancestor of plants and animals. The CYP7 and CYP19 families that are chordate-specific belong to CYP clans that seem to have originated in the CYP genesis locus as well, even though this requires many gene losses to explain their current distribution. The approach to uncovering the CYP genesis locus overcomes confounding effects because of gene conversion, sequence divergence, gene birth and death, and opens the way to understanding the biodiversity of CYP genes, families and subfamilies, which in animals has been obscured by more than 600 Myr of evolution.

[1]  Nicholas H. Putnam,et al.  The Trichoplax genome and the nature of placozoans , 2008, Nature.

[2]  D. Rozman,et al.  New Aspects on Lanosterol 14α-Demethylase and Cytochrome P450 Evolution: Lanosterol/Cycloartenol Diversification and Lateral Transfer , 2004, Journal of Molecular Evolution.

[3]  D. Birnbaum,et al.  MetaHox gene clusters. , 2000, The Journal of experimental zoology.

[4]  S Blair Hedges,et al.  BMC Evolutionary Biology BioMed Central , 2003 .

[5]  Nicholas H. Putnam,et al.  Sea Anemone Genome Reveals Ancestral Eumetazoan Gene Repertoire and Genomic Organization , 2007, Science.

[6]  Mary Goldman,et al.  The UCSC Genome Browser database: update 2011 , 2010, Nucleic Acids Res..

[7]  Srinivas Aluru,et al.  Large-scale maximum likelihood-based phylogenetic analysis on the IBM BlueGene/L , 2007, Proceedings of the 2007 ACM/IEEE Conference on Supercomputing (SC '07).

[8]  M. Cohen,et al.  A cluster of cytochrome P450 genes of the CYP6 family in the house fly. , 1995, DNA and cell biology.

[9]  A. Meyer,et al.  Comparative genomics of ParaHox clusters of teleost fishes: gene cluster breakup and the retention of gene sets following whole genome duplications , 2007, BMC Genomics.

[10]  T. Cavalier-smith,et al.  The neomuran origin of archaebacteria, the negibacterial root of the universal tree and bacterial megaclassification. , 2002, International journal of systematic and evolutionary microbiology.

[11]  Marco Fondi,et al.  A horizontal gene transfer at the origin of phenylpropanoid metabolism: a key adaptation of plants to land , 2009, Biology Direct.

[12]  M. Ingelman-Sundberg,et al.  Identification and Characterization of a Mitochondrial Targeting Signal in Rat Cytochrome P450 2E1 (CYP2E1)* , 2001, The Journal of Biological Chemistry.

[13]  L Filipe C Castro,et al.  The genomic environment around the Aromatase gene: evolutionary insights , 2005, BMC Evolutionary Biology.

[14]  Axel Meyer,et al.  Timing of genome duplications relative to the origin of the vertebrates: did cyclostomes diverge before or after? , 2008, Molecular biology and evolution.

[15]  T. Vogt Phenylpropanoid biosynthesis. , 2010, Molecular plant.

[16]  U. Dräger,et al.  Dorsal and ventral retinal territories defined by retinoic acid synthesis, break-down and nuclear receptor expression , 1999, Mechanisms of Development.

[17]  R. Kahn,et al.  Arf family GTPases: roles in membrane traffic and microtubule dynamics. , 2005, Biochemical Society transactions.

[18]  W. J. Kent,et al.  BLAT--the BLAST-like alignment tool. , 2002, Genome research.

[19]  T. Lacalli,et al.  DORSOVENTRAL AXIS INVERSION : A PHYLOGENETIC PERSPECTIVE , 1996 .

[20]  Min Zhu,et al.  The oldest articulated osteichthyan reveals mosaic gnathostome characters , 2009, Nature.

[21]  B. Degnan,et al.  The NK Homeobox Gene Cluster Predates the Origin of Hox Genes , 2007, Current Biology.

[22]  N. Johnson,et al.  A synthesized pheromone induces upstream movement in female sea lamprey and summons them into traps , 2009, Proceedings of the National Academy of Sciences.

[23]  Masafumi Kaneko,et al.  Cinnamate:Coenzyme A Ligase from the Filamentous Bacterium , 2002 .

[24]  K. Wolfe Robustness—it's not where you think it is , 2000, Nature Genetics.

[25]  C. Wellman,et al.  Fragments of the earliest land plants , 2003, Nature.

[26]  J. Postlethwait,et al.  Measures of synteny conservation between species pairs. , 2002, Genetics.

[27]  R. Feyereisen Arthropod CYPomes illustrate the tempo and mode in P450 evolution. , 2011, Biochimica et biophysica acta.

[28]  J. Postlethwait The zebrafish genome in context: ohnologs gone missing. , 2007, Journal of experimental zoology. Part B, Molecular and developmental evolution.

[29]  M. Hamberg,et al.  Structural insights into the evolutionary paths of oxylipin biosynthetic enzymes , 2008, Nature.

[30]  D. Nebert,et al.  Human cytochromes P 450 in health and disease , 2012 .

[31]  T. Cavalier-smith,et al.  Cell evolution and Earth history: stasis and revolution , 2006, Philosophical Transactions of the Royal Society B: Biological Sciences.

[32]  M. Martindale,et al.  Assessing the root of bilaterian animals with scalable phylogenomic methods , 2009, Proceedings of the Royal Society B: Biological Sciences.

[33]  D. Nelson,et al.  Identification and developmental expression of the full complement of Cytochrome P450 genes in Zebrafish , 2010, BMC Genomics.

[34]  A. Fujiyama,et al.  Using the Acropora digitifera genome to understand coral responses to environmental change , 2011, Nature.

[35]  M. Schalk,et al.  Regulation of the Cinnamate 4-Hydroxylase (CYP73A1) in Jerusalem Artichoke Tubers in Response to Wounding and Chemical Treatments , 1997, Plant physiology.

[36]  A. Meyer,et al.  From 2R to 3R: evidence for a fish-specific genome duplication (FSGD). , 2005, BioEssays : news and reviews in molecular, cellular and developmental biology.

[37]  Tom H. Pringle,et al.  The human genome browser at UCSC. , 2002, Genome research.

[38]  Ting Wang,et al.  The UCSC Genome Browser Database: update 2009 , 2008, Nucleic Acids Res..

[39]  Nicholas H. Putnam,et al.  The amphioxus genome and the evolution of the chordate karyotype , 2008, Nature.

[40]  Alexandros Stamatakis,et al.  Phylogenetic models of rate heterogeneity: a high performance computing perspective , 2006, Proceedings 20th IEEE International Parallel & Distributed Processing Symposium.

[41]  K. Na-Bangchang,et al.  Confutation of the existence of sequence-conserved cytochrome P450 enzymes in Plasmodium falciparum. , 2011, Acta tropica.

[42]  M. Scally,et al.  The chemical defensome: environmental sensing and response genes in the Strongylocentrotus purpuratus genome. , 2006, Developmental biology.

[43]  Vincent Laudet,et al.  Origin and evolution of the ligand-binding ability of nuclear receptors , 2011, Molecular and Cellular Endocrinology.

[44]  Sean R. Eddy,et al.  Profile hidden Markov models , 1998, Bioinform..

[45]  J. Stegeman,et al.  A Revised Evolutionary History of the CYP1A Subfamily: Gene Duplication, Gene Conversion, and Positive Selection , 2006, Journal of Molecular Evolution.

[46]  J. Rougemont,et al.  A rapid bootstrap algorithm for the RAxML Web servers. , 2008, Systematic biology.

[47]  Gabriel V. Markov,et al.  Independent elaboration of steroid hormone signaling pathways in metazoans , 2009, Proceedings of the National Academy of Sciences.

[48]  D. Kelly,et al.  Molecular diversity of sterol 14α‐demethylase substrates in plants, fungi and humans , 1998, FEBS letters.

[49]  U. Meyer,et al.  Evolution of a highly polymorphic human cytochrome P450 gene cluster: CYP2D6. , 1992, Genomics.

[50]  E. Koonin,et al.  A late origin of the extant eukaryotic diversity: divergence time estimates using rare genomic changes , 2011, Biology Direct.

[51]  S. Scherer,et al.  Structure and mapping of the human lanosterol 14alpha-demethylase gene (CYP51) encoding the cytochrome P450 involved in cholesterol biosynthesis; comparison of exon/intron organization with other mammalian and fungal CYP genes. , 1996, Genomics.

[52]  D W Nebert,et al.  P450 superfamily: update on new sequences, gene mapping, accession numbers and nomenclature. , 1996, Pharmacogenetics.

[53]  T. Lacalli Dorsoventral axis inversion , 1995, Nature.

[54]  A. Hughes,et al.  The temporal distribution of gene duplication events in a set of highly conserved human gene families. , 2003, Molecular biology and evolution.

[55]  Eun-Young Kim,et al.  Cytochrome P450 CYP2 genes in the common cormorant: Evolutionary relationships with 130 diapsid CYP2 clan sequences and chemical effects on their expression. , 2011, Comparative biochemistry and physiology. Toxicology & pharmacology : CBP.

[56]  Douglas E. Soltis,et al.  Applying the Bootstrap in Phylogeny Reconstruction , 2003 .

[57]  John Postlethwait,et al.  Subfunction partitioning, the teleost radiation and the annotation of the human genome. , 2004, Trends in genetics : TIG.

[58]  Alvaro J. González,et al.  The Medicago Genome Provides Insight into the Evolution of Rhizobial Symbioses , 2011, Nature.

[59]  David Q. Matus,et al.  Broad phylogenomic sampling improves resolution of the animal tree of life , 2008, Nature.

[60]  J. Postlethwait,et al.  Automated identification of conserved synteny after whole-genome duplication. , 2009, Genome Research.

[61]  L. Maltais,et al.  Comparison of cytochrome P450 (CYP) genes from the mouse and human genomes, including nomenclature recommendations for genes, pseudogenes and alternative-splice variants. , 2004, Pharmacogenetics.

[62]  S. Munro,et al.  Nomenclature for the human Arf family of GTP-binding proteins: ARF, ARL, and SAR proteins , 2006, The Journal of cell biology.

[63]  A. Knoll,et al.  Doushantuo embryos preserved inside diapause egg cysts , 2007, Nature.

[64]  D. Nelson,et al.  The cytochrome P450 (CYP) gene superfamily in Daphnia pulex , 2009, BMC Genomics.

[65]  J. Goldstone,et al.  Isolation and phylogeny of novel cytochrome P450 genes from tunicates (Ciona spp.): a CYP3 line in early deuterostomes? , 2006, Molecular phylogenetics and evolution.

[66]  C. Berney,et al.  A molecular time-scale for eukaryote evolution recalibrated with the continuous microfossil record , 2006, Proceedings of the Royal Society B: Biological Sciences.

[67]  Halverson,et al.  A neoproterozoic snowball earth , 1998, Science.

[68]  J. Mullikin,et al.  The homeodomain complement of the ctenophore Mnemiopsis leidyi suggests that Ctenophora and Porifera diverged prior to the ParaHoxozoa , 2010, EvoDevo.

[69]  G. Tóth,et al.  Significant microsynteny with new evolutionary highlights is detected between Arabidopsis and legume model plants despite the lack of macrosynteny , 2005, Molecular Genetics and Genomics.

[70]  Moya M. Smith,et al.  Scales of thelodont and shark-like fishes from the Ordovician of Colorado , 1996, Nature.

[71]  Alexandros Stamatakis,et al.  RAxML-VI-HPC: maximum likelihood-based phylogenetic analyses with thousands of taxa and mixed models , 2006, Bioinform..

[72]  Robert C. Edgar,et al.  MUSCLE: a multiple sequence alignment method with reduced time and space complexity , 2004, BMC Bioinformatics.

[73]  Jordi Garcia-Fernàndez,et al.  The genesis and evolution of homeobox gene clusters , 2005, Nature Reviews Genetics.

[74]  H. Sezutsu,et al.  Origins of P 450 diversity , 2012 .

[75]  P. Holland,et al.  Breakup of a homeobox cluster after genome duplication in teleosts , 2006, Proceedings of the National Academy of Sciences.

[76]  S. Brenner,et al.  Characterization of the pufferfish (Fugu) genome as a compact model vertebrate genome , 1993, Nature.

[77]  Shigehiro Kuraku,et al.  Insights into Cyclostome Phylogenomics: Pre-2R or Post-2R , 2008, Zoological science.

[78]  S. Munro The Arf-like GTPase Arl1 and its role in membrane traffic. , 2005, Biochemical Society transactions.

[79]  S. Addya,et al.  Dual Targeting Property of the N-terminal Signal Sequence of P4501A1 , 1999, The Journal of Biological Chemistry.

[80]  Takanobu Mizuta,et al.  Presence of sex steroids and cytochrome P450 genes in amphioxus. , 2007, Endocrinology.

[81]  J. Goldstone Environmental sensing and response genes in cnidaria: the chemical defensome in the sea anemone Nematostella vectensis , 2008, Cell Biology and Toxicology.

[82]  John H Postlethwait,et al.  The zebrafish gene map defines ancestral vertebrate chromosomes. , 2005, Genome research.

[83]  Paramvir S. Dehal,et al.  Two Rounds of Whole Genome Duplication in the Ancestral Vertebrate , 2005, PLoS biology.

[84]  C. Wellman The invasion of the land by plants: when and where? , 2010, The New phytologist.

[85]  Sean R. Eddy,et al.  Hidden Markov model speed heuristic and iterative HMM search procedure , 2010, BMC Bioinformatics.

[86]  H. Okamoto,et al.  Retinoic acid-metabolizing enzyme Cyp26a1 is essential for determining territories of hindbrain and spinal cord in zebrafish. , 2005, Developmental biology.

[87]  A. Mushegian,et al.  Intermediary metabolism in sea urchin: the first inferences from the genome sequence. , 2006, Developmental biology.

[88]  Rafael D. Rosengarten,et al.  The Early ANTP Gene Repertoire: Insights from the Placozoan Genome , 2008, PloS one.

[89]  D. Nelson,et al.  Evolution of the cytochrome P450 genes. , 1989, Xenobiotica; the fate of foreign compounds in biological systems.

[90]  A. Hughes,et al.  2R or not 2R: Testing hypotheses of genome duplication in early vertebrates , 2004, Journal of Structural and Functional Genomics.

[91]  D. Nelson Metazoan cytochrome P450 evolution. , 1998, Comparative biochemistry and physiology. Part C, Pharmacology, toxicology & endocrinology.

[92]  Sean R. Eddy,et al.  Accelerated Profile HMM Searches , 2011, PLoS Comput. Biol..

[93]  Fabien Burki,et al.  Phylogenomics reveals a new ‘megagroup’ including most photosynthetic eukaryotes , 2008, Biology Letters.

[94]  J. Mullikin,et al.  Extreme mitochondrial evolution in the ctenophore Mnemiopsis leidyi: Insight from mtDNA and the nuclear genome , 2011, Mitochondrial DNA.

[95]  L. Margaretha,et al.  Cyp26 enzymes generate the retinoic acid response pattern necessary for hindbrain development , 2007, Development.

[96]  B. Lang,et al.  Rooting the eukaryotic tree with mitochondrial and bacterial proteins. , 2012, Molecular biology and evolution.

[97]  D. Nelson,et al.  Cytochrome P450 and the individuality of species. , 1999, Archives of biochemistry and biophysics.

[98]  R. Feyereisen,et al.  Evolution of insect P450. , 2006, Biochemical Society transactions.

[99]  M. Binder,et al.  Molecular evolution of glutamine synthetase II: Phylogenetic evidence of a non-endosymbiotic gene transfer event early in plant evolution , 2010, BMC Evolutionary Biology.

[100]  S. Vinogradov,et al.  What are the origins and phylogeny of plant hemoglobins? , 2011, Communicative & integrative biology.

[101]  Hunter B. Fraser,et al.  Extensive conservation of ancient microsynteny across metazoans due to cis-regulatory constraints , 2012, Genome research.

[102]  P. Bajpai,et al.  Bimodal targeting of cytochrome P450s to endoplasmic reticulum and mitochondria: the concept of chimeric signals , 2011, The FEBS journal.