Where Did the Brownian Particle Go
暂无分享,去创建一个
R. Pemantle | Y. Peres | J. Pitman | M. Yor | Robin Pemantle
[1] A. Dembo,et al. Thick points for planar Brownian motion and the Erdős-Taylor conjecture on random walk , 2001 .
[2] A. Dembo,et al. Thick points for spatial Brownian motion: multifractal analysis of occupation measure , 2000 .
[3] David Aldous. Brownian Excursion Conditioned on Its Local Time , 1998 .
[4] M. Yor,et al. Beta Variables as Times Spent in [0, ∞[ By Certain Perturbed Brownian Motions , 1998 .
[5] On the upcrossing chains of stopped Brownian motion , 1998 .
[6] M. Yor,et al. The Brownian Burglar: conditioning Brownian motion by its local time process , 1998 .
[7] M. Perman,et al. Perturbed Brownian motions , 1997 .
[8] J. Pitman,et al. Random Discrete Distributions Derived from Self-Similar Random Sets , 1996 .
[9] M. Yor,et al. Quelques identités en loi pour les processus de Bessel , 2018, Astérisque.
[10] K. Burdzy. Labyrinth dimension of Brownian trace , 1995 .
[11] Some aspects of Brownian motion. Part I: Some special functionals , 1994 .
[12] P. Carmona,et al. Some extensions of the arc sine law as partial consequences of the scaling property of Brownian motion , 1994 .
[13] R. Getoor,et al. On the arc-sine laws for Lévy processes , 1994, Journal of Applied Probability.
[14] Richard F. Bass,et al. Local times on curves and uniform invariance principles , 1992 .
[15] Jim Pitman,et al. Arcsine Laws and Interval Partitions Derived from a Stable Subordinator , 1992 .
[16] J. Pitman,et al. Size-biased sampling of Poisson point processes and excursions , 1992 .
[17] M. Yor. Some Aspects Of Brownian Motion , 1992 .
[18] F. Petit. Quelques extensions de la loi de l'arcsinus , 1992 .
[19] J. Sethuraman. A CONSTRUCTIVE DEFINITION OF DIRICHLET PRIORS , 1991 .
[20] R. Durrett. Probability: Theory and Examples , 1993 .
[21] G. Lawler,et al. Non-intersection exponents for Brownian paths , 1990 .
[22] G. Lawler,et al. Nonintersection Exponents for Brownian Paths. II. Estimates and Applications to a Random Fractal , 1990 .
[23] M. Yor,et al. Continuous martingales and Brownian motion , 1990 .
[24] K. Burdzy. Cut Points on Brownian Paths , 1989 .
[25] Jim Pitman,et al. On Walsh's Brownian motions , 1989 .
[26] N. H. Bingham,et al. On higher-dimensional analogues of the arc-sine law , 1988, Journal of Applied Probability.
[27] Uniform measure results for the image of subsets under Brownian motion , 1987 .
[28] M. Taqqu. A Bibliographical Guide to Self-Similar Processes and Long-Range Dependence , 1986 .
[29] D. Aldous. Exchangeability and related topics , 1985 .
[30] Ts. G. Ignatov. On a Constant Arising in the Asymptotic Theory of Symmetric Groups, and on Poisson–Dirichlet Measures , 1982 .
[31] T. Rolski. On random discrete distributions , 1980 .
[32] T. Ferguson. Prior Distributions on Spaces of Probability Measures , 1974 .
[33] J. Lamperti. Semi-stable Markov processes. I , 1972 .
[34] Herman Rubin,et al. A Characterization Based on the Absolute Difference of Two I. I. D. Random Variables , 1970 .
[35] B. A. Rogozin,et al. On Joint Distributions of Random Variables Associated with Fluctuations of a Process with Independent Increments , 1969 .
[36] H. McKean,et al. Diffusion processes and their sample paths , 1996 .
[37] J. Lamperti. Semi-stable stochastic processes , 1962 .
[38] James E. pLebensohn. Geometry and the Imagination , 1952 .
[39] P. Levy. Sur certains processus stochastiques homogènes , 1940 .