Declarative Data Serving: The Future of Machine Learning Inference on the Edge

Recent advances in computer architecture and networking have ushered in a new age of edge computing, where computation is placed close to the point of data collection to facilitate low-latency decision making. As the complexity of such deployments grow into networks of interconnected edge devices, getting the necessary data to be in “the right place at the right time” can become a challenge. We envision a future of edge analytics where data flows between edge nodes are declaratively configured through high-level constraints. Using machine learning model-serving as a prototypical task, we illustrate how the heterogeneity and specialization of edge devices can lead to complex, task-specific communication patterns even in relatively simple situations. Without a declarative framework, managing this complexity will be challenging for developers and will lead to brittle systems. We conclude with a research vision for database community that brings our perspective to the emergent area of edge computing. PVLDB Reference Format: Ted Shaowang, Nilesh Jain, Dennis D. Matthews, and Sanjay Krishnan. Declarative Data Serving: The Future of Machine Learning Inference on the Edge. PVLDB, 14(11): 2555 2562, 2021. doi:10.14778/3476249.3476302

[1]  Haichen Shen,et al.  Distream: scaling live video analytics with workload-adaptive distributed edge intelligence , 2020, SenSys.

[2]  Eyal de Lara,et al.  Cloudpath: a multi-tier cloud computing framework , 2017, SEC.

[3]  Wei Gao,et al.  MUVR: Supporting Multi-User Mobile Virtual Reality with Resource Constrained Edge Cloud , 2018, 2018 IEEE/ACM Symposium on Edge Computing (SEC).

[4]  Giovanni Pau,et al.  Parkmaster: an in-vehicle, edge-based video analytics service for detecting open parking spaces in urban environments , 2017, SEC.

[5]  Song Han,et al.  Deep Compression: Compressing Deep Neural Network with Pruning, Trained Quantization and Huffman Coding , 2015, ICLR.

[6]  Zhi-Wei Xu,et al.  Cloud-Sea Computing Systems: Towards Thousand-Fold Improvement in Performance per Watt for the Coming Zettabyte Era , 2014, Journal of Computer Science and Technology.

[7]  Frederick Reiss,et al.  Design Considerations for High Fan-In Systems: The HiFi Approach , 2005, CIDR.

[8]  Péter Kiss,et al.  Deployment of IoT applications on 5G edge , 2018, 2018 IEEE International Conference on Future IoT Technologies (Future IoT).

[9]  Zhuo Chen,et al.  Bandwidth-Efficient Live Video Analytics for Drones Via Edge Computing , 2018, 2018 IEEE/ACM Symposium on Edge Computing (SEC).

[10]  Joseph Gonzalez,et al.  InferLine: latency-aware provisioning and scaling for prediction serving pipelines , 2020, SoCC.

[11]  V. Reddi,et al.  TensorFlow Lite Micro: Embedded Machine Learning on TinyML Systems , 2020, MLSys.

[12]  Paramvir Bahl,et al.  VideoEdge: Processing Camera Streams using Hierarchical Clusters , 2018, 2018 IEEE/ACM Symposium on Edge Computing (SEC).

[13]  Brian Amento,et al.  FocusStack: Orchestrating Edge Clouds Using Focus of Attention , 2017, IEEE Internet Computing.

[14]  Divyakant Agrawal,et al.  DPaxos: Managing Data Closer to Users for Low-Latency and Mobile Applications , 2018, SIGMOD Conference.

[15]  Aaron J. Elmore,et al.  Understanding and optimizing packed neural network training for hyper-parameter tuning , 2021, DEEM@SIGMOD.

[16]  Leandro Navarro-Moldes,et al.  PiCasso: Enabling information-centric multi-tenancy at the edge of community mesh networks , 2019, Comput. Networks.

[17]  Alexandru Iosup,et al.  Sharing and Caring of Data at the Edge , 2020, HotEdge.

[18]  Ada Gavrilovska,et al.  Personal clouds: Sharing and integrating networked resources to enhance end user experiences , 2014, IEEE INFOCOM 2014 - IEEE Conference on Computer Communications.

[19]  Marcos Dias de Assunção,et al.  Apache Spark , 2019, Encyclopedia of Big Data Technologies.

[20]  Minlan Yu,et al.  Wide-area analytics with multiple resources , 2018, EuroSys.

[21]  Trevor N. Mudge,et al.  Neurosurgeon: Collaborative Intelligence Between the Cloud and Mobile Edge , 2017, ASPLOS.

[22]  Paramvir Bahl,et al.  The Case for VM-Based Cloudlets in Mobile Computing , 2009, IEEE Pervasive Computing.

[23]  Byoungheon Shin,et al.  Application-Aware IoT Camera Virtualization for Video Analytics Edge Computing , 2018, 2018 IEEE/ACM Symposium on Edge Computing (SEC).

[24]  Gregory R. Ganger,et al.  alsched: algebraic scheduling of mixed workloads in heterogeneous clouds , 2012, SoCC '12.

[25]  Peng Liu,et al.  ParaDrop: Enabling Lightweight Multi-tenancy at the Network’s Extreme Edge , 2016, 2016 IEEE/ACM Symposium on Edge Computing (SEC).

[26]  Peter R. Pietzuch,et al.  Frontier: Resilient Edge Processing for the Internet of Things , 2018, Proc. VLDB Endow..

[27]  Weisong Shi,et al.  LAVEA: latency-aware video analytics on edge computing platform , 2017, SEC.

[28]  Hong Zhong,et al.  Firework: Big Data Sharing and Processing in Collaborative Edge Environment , 2016, 2016 Fourth IEEE Workshop on Hot Topics in Web Systems and Technologies (HotWeb).

[29]  Randy H. Katz,et al.  Improving MapReduce Performance in Heterogeneous Environments , 2008, OSDI.

[30]  Hao Yin,et al.  Improving Cloud Gaming Experience through Mobile Edge Computing , 2019, IEEE Wireless Communications.

[31]  Amar Phanishayee,et al.  Accelerating Deep Learning Workloads Through Efficient Multi-Model Execution , 2018 .

[32]  Zhitao Shen,et al.  CSA: Streaming Engine for Internet of Things , 2015, IEEE Data Eng. Bull..

[33]  Xin Wang,et al.  Clipper: A Low-Latency Online Prediction Serving System , 2016, NSDI.

[34]  Vladimir Vlassov,et al.  SpanEdge: Towards Unifying Stream Processing over Central and Near-the-Edge Data Centers , 2016, 2016 IEEE/ACM Symposium on Edge Computing (SEC).

[35]  Yang Peng,et al.  Device-driven On-demand Deployment of Serverless Computing Functions , 2020, 2020 IEEE International Conference on Pervasive Computing and Communications Workshops (PerCom Workshops).

[36]  Mahadev Satyanarayanan,et al.  The Emergence of Edge Computing , 2017, Computer.

[37]  Gwendal Simon,et al.  A hybrid edge-cloud architecture for reducing on-demand gaming latency , 2014, Multimedia Systems.

[38]  Christopher Olston,et al.  TensorFlow-Serving: Flexible, High-Performance ML Serving , 2017, ArXiv.

[39]  Michael J. Franklin,et al.  PSoup: a system for streaming queries over streaming data , 2003, The VLDB Journal.

[40]  Volker Markl,et al.  The NebulaStream Platform for Data and Application Management in the Internet of Things , 2020, CIDR.

[41]  Dipankar Raychaudhuri,et al.  EdgeDrive: Supporting Advanced Driver Assistance Systems using Mobile Edge Clouds Networks , 2019, IEEE INFOCOM 2019 - IEEE Conference on Computer Communications Workshops (INFOCOM WKSHPS).

[42]  Katherine Guo,et al.  Precog: prefetching for image recognition applications at the edge , 2017, SEC.

[43]  David E. Culler,et al.  TinyOS: An Operating System for Sensor Networks , 2005, Ambient Intelligence.

[44]  Yang Guo,et al.  A survey on peer-to-peer video streaming systems , 2008, Peer-to-Peer Netw. Appl..

[45]  Dipankar Raychaudhuri,et al.  Towards efficient edge cloud augmentation for virtual reality MMOGs , 2017, SEC.

[46]  Sanjay Krishnan,et al.  Band-limited Training and Inference for Convolutional Neural Networks , 2019, ICML.

[47]  Xinwei Fu,et al.  EdgeWise: A Better Stream Processing Engine for the Edge , 2019, USENIX ATC.

[48]  Werner Vogels,et al.  Dynamo: amazon's highly available key-value store , 2007, SOSP.

[49]  Ramesh Govindan,et al.  The Sensor Network as a Database , 2002 .

[50]  Abhishek Chandra,et al.  Nebula: Distributed Edge Cloud for Data Intensive Computing , 2014, 2014 IEEE International Conference on Cloud Engineering.

[51]  Sanjay Krishnan,et al.  DeepLens: Towards a Visual Data Management System , 2019, CIDR.

[52]  Katherine Guo,et al.  Cachier: Edge-Caching for Recognition Applications , 2017, 2017 IEEE 37th International Conference on Distributed Computing Systems (ICDCS).

[53]  Jason P. Jue,et al.  All One Needs to Know about Fog Computing and Related Edge Computing Paradigms , 2019 .

[54]  Rajmohan Rajaraman,et al.  The Cougar Project: a work-in-progress report , 2003, SGMD.

[55]  Wei Hong,et al.  Proceedings of the 5th Symposium on Operating Systems Design and Implementation Tag: a Tiny Aggregation Service for Ad-hoc Sensor Networks , 2022 .

[56]  Wei Hong,et al.  TinyDB: an acquisitional query processing system for sensor networks , 2005, TODS.