Data‐Driven Materials Exploration for Li‐Ion Conductive Ceramics by Exhaustive and Informatics‐Aided Computations

[1]  S. Redner,et al.  Introduction To Percolation Theory , 2018 .

[2]  Li Lu,et al.  Research Update: Ca doping effect on the Li-ion conductivity in NASICON-type solid electrolyte LiZr2(PO4)3: A first-principles molecular dynamics study , 2018, APL Materials.

[3]  I. Takeuchi,et al.  Bayesian-Driven First-Principles Calculations for Accelerating Exploration of Fast Ion Conductors for Rechargeable Battery Application , 2018, Scientific Reports.

[4]  I. Takeuchi,et al.  A general representation scheme for crystalline solids based on Voronoi-tessellation real feature values and atomic property data , 2018, Science and technology of advanced materials.

[5]  Gerbrand Ceder,et al.  Rapid Photovoltaic Device Characterization through Bayesian Parameter Estimation , 2017 .

[6]  Li Lu,et al.  Computational and Experimental Investigation of the Electrochemical Stability and Li-Ion Conduction Mechanism of LiZr2(PO4)3 , 2017 .

[7]  Venkatasubramanian Viswanathan,et al.  Review—Practical Challenges Hindering the Development of Solid State Li Ion Batteries , 2017 .

[8]  Arumugam Manthiram,et al.  Lithium battery chemistries enabled by solid-state electrolytes , 2017 .

[9]  Ekin D. Cubuk,et al.  Holistic computational structure screening of more than 12 000 candidates for solid lithium-ion conductor materials , 2017 .

[10]  Feng Wu,et al.  The pursuit of solid-state electrolytes for lithium batteries: from comprehensive insight to emerging horizons , 2016 .

[11]  M. Nakayama,et al.  Density functional studies of olivine-type LiFePO4 and NaFePO4 as positive electrode materials for rechargeable lithium and sodium ion batteries , 2016 .

[12]  M. Nakayama,et al.  First-Principles Investigation of the Na+ Ion Transport Property in Oxyfluorinated Titanium(IV) Phosphate Na3Ti2P2O10F , 2016 .

[13]  Gerbrand Ceder,et al.  Interface Stability in Solid-State Batteries , 2016 .

[14]  R. A. Souza,et al.  Understanding Oxygen-Vacancy Migration in the Fluorite Oxide CeO2: An Ab Initio Study of Impurity-Anion Migration , 2015 .

[15]  Peter Lamp,et al.  Inorganic Solid-State Electrolytes for Lithium Batteries: Mechanisms and Properties Governing Ion Conduction. , 2015, Chemical reviews.

[16]  S. Ong,et al.  Design principles for solid-state lithium superionic conductors. , 2015, Nature materials.

[17]  M. Nakayama,et al.  Insights into the Lithium-Ion Conduction Mechanism of Garnet-Type Cubic Li5La3Ta2O12 by ab-Initio Calculations , 2015 .

[18]  Atsuto Seko,et al.  Prediction of Low-Thermal-Conductivity Compounds with First-Principles Anharmonic Lattice-Dynamics Calculations and Bayesian Optimization. , 2015, Physical review letters.

[19]  Mayumi Kimura,et al.  Informatics-Aided Density Functional Theory Study on the Li Ion Transport of Tavorite-Type LiMTO4F (M3+-T5+, M2+-T6+) , 2015, J. Chem. Inf. Model..

[20]  Corey Oses,et al.  Materials Cartography: Representing and Mining Material Space Using Structural and Electronic Fingerprints , 2014, 1412.4096.

[21]  Rahul Malik,et al.  Spinel compounds as multivalent battery cathodes: A systematic evaluation based on ab initio calculations , 2014 .

[22]  Lusann Yang,et al.  Proposed definition of crystal substructure and substructural similarity , 2014 .

[23]  Atsuto Seko,et al.  Machine learning with systematic density-functional theory calculations: Application to melting temperatures of single- and binary-component solids , 2013, 1310.1546.

[24]  K. Fujimura,et al.  Accelerated Materials Design of Lithium Superionic Conductors Based on First‐Principles Calculations and Machine Learning Algorithms , 2013 .

[25]  Kristin A. Persson,et al.  Commentary: The Materials Project: A materials genome approach to accelerating materials innovation , 2013 .

[26]  Kristof T. Schütt,et al.  How to represent crystal structures for machine learning: Towards fast prediction of electronic properties , 2013, 1307.1266.

[27]  Toshihiro Kasuga,et al.  Concerted Migration Mechanism in the Li Ion Dynamics of Garnet-Type Li7La3Zr2O12 , 2013 .

[28]  M. Nogami,et al.  First-principles density functional calculation of electrochemical stability of fast Li ion conducting garnet-type oxides. , 2012, Physical chemistry chemical physics : PCCP.

[29]  Manfred Martin,et al.  A concerted migration mechanism of mixed oxide ion and electron conduction in reduced ceria studied by first-principles density functional theory. , 2012, Physical chemistry chemical physics : PCCP.

[30]  Masayuki Nogami,et al.  Multivariate Method-Assisted Ab Initio Study of Olivine-Type LiMXO4 (Main Group M2+–X5+ and M3+–X4+) Compositions as Potential Solid Electrolytes , 2012 .

[31]  K. Müller,et al.  Fast and accurate modeling of molecular atomization energies with machine learning. , 2011, Physical review letters.

[32]  Stefan Adams,et al.  High power lithium ion battery materials by computational design , 2011 .

[33]  Anubhav Jain,et al.  Formation enthalpies by mixing GGA and GGA + U calculations , 2011 .

[34]  Anubhav Jain,et al.  Data mined ionic substitutions for the discovery of new compounds. , 2011, Inorganic chemistry.

[35]  Gerbrand Ceder,et al.  Opportunities and challenges for first-principles materials design and applications to Li battery materials , 2010 .

[36]  M. Nogami,et al.  Ionic conductivity of lithium in spinel-type Li4/3Ti5/3O4–LiMg1/2Ti3/2O4 solid-solution system , 2010 .

[37]  R. Kondor,et al.  Gaussian approximation potentials: the accuracy of quantum mechanics, without the electrons. , 2009, Physical review letters.

[38]  I. Brown,et al.  Recent Developments in the Methods and Applications of the Bond Valence Model , 2009, Chemical reviews.

[39]  Tim Mueller,et al.  Bayesian approach to cluster expansions , 2009 .

[40]  R. P. Rao,et al.  Transport pathways for mobile ions in disordered solids from the analysis of energy-scaled bond-valence mismatch landscapes. , 2009, Physical chemistry chemical physics : PCCP.

[41]  Fujio Izumi,et al.  VESTA: a three-dimensional visualization system for electronic and structural analysis , 2008 .

[42]  S. Adams,et al.  Pathways for ion transport in nanostructured BaF2:CaF2 , 2008 .

[43]  G. Scuseria,et al.  Restoring the density-gradient expansion for exchange in solids and surfaces. , 2007, Physical review letters.

[44]  W. Weppner,et al.  Schnelle Lithiumionenleitung in granatartigem Li7La3Zr2O12 , 2007 .

[45]  Venkataraman Thangadurai,et al.  Fast Lithium Ion Conduction in Garnet‐Type Li7La3Zr2O12 , 2007 .

[46]  Stefan Adams,et al.  From bond valence maps to energy landscapes for mobile ions in ion-conducting solids , 2006 .

[47]  D. Lit Cumulative Author Index , 1999, Powder Diffraction.

[48]  Burke,et al.  Generalized Gradient Approximation Made Simple. , 1996, Physical review letters.

[49]  Kresse,et al.  Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. , 1996, Physical review. B, Condensed matter.

[50]  G. Kresse,et al.  Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set , 1996 .

[51]  Blöchl,et al.  Projector augmented-wave method. , 1994, Physical review. B, Condensed matter.

[52]  Takashi Uchida,et al.  High ionic conductivity in lithium lanthanum titanate , 1993 .

[53]  Jackson,et al.  Atoms, molecules, solids, and surfaces: Applications of the generalized gradient approximation for exchange and correlation. , 1992, Physical review. B, Condensed matter.

[54]  Wang,et al.  Accurate and simple analytic representation of the electron-gas correlation energy. , 1992, Physical review. B, Condensed matter.

[55]  I. D. Brown,et al.  The inorganic crystal structure data base , 1983, J. Chem. Inf. Comput. Sci..

[56]  H. Hong,et al.  Crystal structure and ionic conductivity of Li14Zn(GeO4)4 and other new Li+ superionic conductors☆ , 1978 .

[57]  H. Schulz,et al.  One-dimensional cooperative LI-diffusion in β-eucryptite , 1977 .

[58]  John B. Goodenough,et al.  Fast Na+-ion transport in skeleton structures , 1976 .

[59]  H. Hong,et al.  Crystal structures and crystal chemistry in the system Na1+xZr2SixP3−xO12☆ , 1976 .

[60]  Toshihiro Kasuga,et al.  An efficient rule-based screening approach for discovering fast lithium ion conductors using density functional theory and artificial neural networks , 2014 .

[61]  Venkataraman Thangadurai,et al.  Li6ALa2Ta2O12 (A = Sr, Ba): Novel Garnet‐Like Oxides for Fast Lithium Ion Conduction , 2005 .