Using over-sampling in a Bayesian classifier EDA to solve deceptive and hierarchical problems

Evolutionary Algorithms based on Probabilistic Modeling is a growing research field. Recently, hybrids that borrow ideas from the field of classification were introduced. We extend such hybrids, and evaluate four strategies for truncation of an over-sized population of samples. The strategies are evaluated over a number of difficult problems from the literature, among them, a hierarchical 256-bit HIFF problem. We show that over-sampling in conjunction with a truncation strategy can guide the search without increasing the number of performed fitness evaluations per generation, and that a truncation strategy which inverses the sampling pressure can, fitness-wise, perform significantly better than regular sampling.

[1]  Nir Friedman,et al.  Building Classifiers Using Bayesian Networks , 1996, AAAI/IAAI, Vol. 2.

[2]  Ryszard S. Michalski,et al.  LEARNABLE EVOLUTION MODEL: Evolutionary Processes Guided by Machine Learning , 2004, Machine Learning.

[3]  Edwin D. de Jong,et al.  Representation Development from Pareto-Coevolution , 2003, GECCO.

[4]  Nicholas Freitag McPhee,et al.  A theoretical analysis of the HIFF problem , 2005, GECCO '05.

[5]  Jürgen Branke,et al.  Addressing sampling errors and diversity loss in UMDA , 2007, GECCO '07.

[6]  Conor Ryan,et al.  On the diversity of diversity , 2007, 2007 IEEE Congress on Evolutionary Computation.

[7]  Ron S. Kenett,et al.  Statistics for Business and Economics. , 1988 .

[8]  Conor Ryan,et al.  Maintaining Diversity in EDAs for Real-Valued Optimisation Problems , 2007, 2007 Frontiers in the Convergence of Bioscience and Information Technologies.

[9]  D. Goldberg,et al.  Escaping hierarchical traps with competent genetic algorithms , 2001 .

[10]  David E. Goldberg,et al.  Spin-Flip Symmetry and Synchronization , 2002, Evolutionary Computation.

[11]  Kalyanmoy Deb,et al.  Messy Genetic Algorithms: Motivation, Analysis, and First Results , 1989, Complex Syst..

[12]  Xavier Llorà,et al.  Wise Breeding GA via Machine Learning Techniques for Function Optimization , 2003, GECCO.

[13]  J. A. Lozano,et al.  Estimation of Distribution Algorithms: A New Tool for Evolutionary Computation , 2001 .

[14]  David E. Goldberg,et al.  A Survey of Optimization by Building and Using Probabilistic Models , 2002, Comput. Optim. Appl..

[15]  Michael O'Neill,et al.  Genetic Algorithms Using Grammatical Evolution , 2002, EuroGP.

[16]  WU ANNIES. The Proportional Genetic Algorithm : Gene Expression in a Genetic Algorithm , 2022 .

[17]  Julian F. Miller,et al.  Genetic and Evolutionary Computation — GECCO 2003 , 2003, Lecture Notes in Computer Science.

[18]  Thilo Mahnig,et al.  Comparing the adaptive Boltzmann selection schedule SDS to truncation selection , 2007 .

[19]  Jordan B. Pollack,et al.  Modeling Building-Block Interdependency , 1998, PPSN.

[20]  Dirk Thierens,et al.  Numerical Optimization with Real-Valued Estimation-of-Distribution Algorithms , 2006, Scalable Optimization via Probabilistic Modeling.

[21]  Jonathan L. Shapiro,et al.  Diversity Loss in General Estimation of Distribution Algorithms , 2006, PPSN.

[22]  Marcus Gallagher,et al.  On the importance of diversity maintenance in estimation of distribution algorithms , 2005, GECCO '05.

[23]  H. Mühlenbein,et al.  From Recombination of Genes to the Estimation of Distributions I. Binary Parameters , 1996, PPSN.

[24]  Pedro Larrañaga,et al.  Evolutionary computation based on Bayesian classifiers , 2004 .