Automatic Detection and Resolution of Lexical Ambiguity in Process Models

System-related engineering tasks are often conducted using process models. In this context, it is essential that these models do not contain structural or terminological inconsistencies. To this end, several automatic analysis techniques have been proposed to support quality assurance. While formal properties of control flow can be checked in an automated fashion, there is a lack of techniques addressing textual quality. More specifically, there is currently no technique available for handling the issue of lexical ambiguity caused by homonyms and synonyms. In this paper, we address this research gap and propose a technique that detects and resolves lexical ambiguities in process models. We evaluate the technique using three process model collections from practice varying in size, domain, and degree of standardization. The evaluation demonstrates that the technique significantly reduces the level of lexical ambiguity and that meaningful candidates are proposed for resolving ambiguity.

[1]  Wil M. P. van der Aalst,et al.  Workflow Verification: Finding Control-Flow Errors Using Petri-Net-Based Techniques , 2000, Business Process Management.

[2]  Dekang Lin,et al.  An Information-Theoretic Definition of Similarity , 1998, ICML.

[3]  Jan Mendling,et al.  Spotting Terminology Deficiencies in Process Model Repositories , 2013, BMMDS/EMMSAD.

[4]  Yann-Gaël Guéhéneuc,et al.  DECOR: A Method for the Specification and Detection of Code and Design Smells , 2010, IEEE Transactions on Software Engineering.

[5]  Martin J. Shepperd,et al.  The Problem of Labels in E-Assessment of Diagrams , 2009, JERC.

[6]  Julio Cesar Sampaio do Prado Leite,et al.  Requirements Validation Through Viewpoint Resolution , 1991, IEEE Trans. Software Eng..

[7]  Marta Indulska,et al.  How do practitioners use conceptual modeling in practice? , 2006, Data Knowl. Eng..

[8]  Andrew W. Moore,et al.  X-means: Extending K-means with Efficient Estimation of the Number of Clusters , 2000, ICML.

[9]  Michael Rosemann,et al.  Potential pitfalls of process modeling: part A , 2006, Bus. Process. Manag. J..

[10]  Giancarlo Guizzardi,et al.  Requirements engineering based on business process models: A case study , 2009, 2009 13th Enterprise Distributed Object Computing Conference Workshops.

[11]  Bernhard Thalheim,et al.  Conceptual Modeling for E-Business and the Web , 2000, Lecture Notes in Computer Science.

[12]  Jan Mendling,et al.  Automatic Derivation of Service Candidates from Business Process Model Repositories , 2012, BIS.

[13]  Jairo Francisco de Souza,et al.  A Method for Service Identification from Business Process Models in a SOA Approach , 2009, BMMDS/EMMSAD.

[14]  William B. Frakes,et al.  An Empirical Study of Representation Methods for Reusable Software Components , 1994, IEEE Trans. Software Eng..

[15]  Narasimha Bolloju,et al.  Assisting novice analysts in developing quality conceptual models with UML , 2006, CACM.

[16]  Jaejoon Lee,et al.  Concepts and Guidelines of Feature Modeling for Product Line Software Engineering , 2002, ICSR.

[17]  Simone Paolo Ponzetto,et al.  Joining Forces Pays Off: Multilingual Joint Word Sense Disambiguation , 2012, EMNLP.

[18]  Della Summers,et al.  Longman Dictionary of Contemporary English , 1995 .

[19]  Elisabeth Métais,et al.  Database Design Tools: An Expert System Approach , 1985, VLDB.

[20]  Adam Kilgarriff,et al.  Gold standard datasets for evaluating word sense disambiguation programs , 1998, Comput. Speech Lang..

[21]  Lois Mai Chan,et al.  Personalized knowledge organization and access for the web , 1999 .

[22]  Bente Anda,et al.  Towards an inspection technique for use case models , 2002, SEKE '02.

[23]  Eneko Agirre,et al.  Exploring Automatic Word Sense Disambiguation with Decision Lists and the Web , 2000, SAIC@COLING.

[24]  H. Schütze,et al.  Dimensions of meaning , 1992, Supercomputing '92.

[25]  Mariano Ceccato,et al.  Ambiguity Identification and Measurement in Natural Language Texts , 2004 .

[26]  Constance L. Heitmeyer,et al.  Automated consistency checking of requirements specifications , 1996, TSEM.

[27]  Simone Paolo Ponzetto,et al.  Knowledge-Rich Word Sense Disambiguation Rivaling Supervised Systems , 2010, ACL.

[28]  Iadh Ounis,et al.  University of Glasgow at the Web Track: Dynamic Application of Hyperlink Analysis using the Query Scope , 2003, TREC.

[29]  Tobias Lehmann A Framework for Ontology based Integration of Structured IT-Systems , 2007 .

[30]  Barbara Paech,et al.  Detecting Ambiguities in Requirements Documents Using Inspections , 2001 .

[31]  Gerti Kappel,et al.  From the Heterogeneity Jungle to Systematic Benchmarking , 2010, MoDELS Workshops.

[32]  Keith Phalp,et al.  Replicating the CREWS Use Case Authoring Guidelines Experiment , 2000, Empirical Software Engineering.

[33]  Dekang Lin,et al.  Automatic Retrieval and Clustering of Similar Words , 1998, ACL.

[34]  J. Berger Statistical Decision Theory and Bayesian Analysis , 1988 .

[35]  L. Brown,et al.  Interval Estimation for a Binomial Proportion , 2001 .

[36]  Arne Sølvberg,et al.  Understanding quality in conceptual modeling , 1994, IEEE Software.

[37]  Jan Mendling,et al.  Beyond soundness: on the verification of semantic business process models , 2010, Distributed and Parallel Databases.

[38]  Albert Sydney Hornby,et al.  Oxford advanced learner\'s dictionary of current English / A S Hornby with A P Cowie, A C Gimson , 1975 .

[39]  Simone Paolo Ponzetto,et al.  Multilingual WSD with Just a Few Lines of Code: the BabelNet API , 2012, ACL.

[40]  Jan Mendling,et al.  Activity labeling in process modeling: Empirical insights and recommendations , 2010, Inf. Syst..

[41]  Andrian Marcus,et al.  Recovery of Traceability Links between Software Documentation and Source Code , 2005, Int. J. Softw. Eng. Knowl. Eng..

[42]  Bashar Nuseibeh,et al.  Automatic detection of nocuous coordination ambiguities in natural language requirements , 2010, ASE '10.

[43]  Jörg Becker,et al.  Identifying Business Process Activity Mappings by Optimizing Behavioral Similarity , 2012, AMCIS.

[44]  Mohsen Attaran,et al.  Exploring the relationship between information technology and business process reengineering , 2004, Inf. Manag..

[45]  Walter W. Piegorsch,et al.  Sample sizes for improved binomial confidence intervals , 2004, Comput. Stat. Data Anal..

[46]  Yue Wang,et al.  Automatic Detection of Ambiguous Terminology for Software Requirements , 2013, NLDB.

[47]  刘江雪,et al.  LIN volume 11 issue 2 Cover and Back matter , 1975, Journal of Linguistics.

[48]  Reinhard Schütte,et al.  The Guidelines of Modeling - An Approach to Enhance the Quality in Information Models , 1998, ER.

[49]  T.C. Lethbridge,et al.  Guide to the Software Engineering Body of Knowledge (SWEBOK) and the Software Engineering Education Knowledge (SEEK) - a preliminary mapping , 2001, 10th International Workshop on Software Technology and Engineering Practice.

[50]  Judy Pearsall,et al.  Oxford Dictionary of English , 2010 .

[51]  Artem Polyvyanyy,et al.  An Ontology-Based Service Discovery Approach for the Provisioning of Product- Service Bundles , 2008, ECIS.

[52]  Stephen Hayne,et al.  Multi-user view integration system (MUVIS): an expert system for view integration , 1990, [1990] Proceedings. Sixth International Conference on Data Engineering.

[53]  Hafedh Mili,et al.  Business process modeling languages: Sorting through the alphabet soup , 2010, CSUR.

[54]  Hwee Tou Ng,et al.  Word Sense Disambiguation Improves Information Retrieval , 2012, ACL.

[55]  Barry W. Boehm,et al.  Understanding and Controlling Software Costs , 1988, IEEE Trans. Software Eng..

[56]  Erik Kamsties,et al.  From Contract Drafting to Software Specification: Linguistic Sources of Ambiguity , 2003 .

[57]  Erik Kamsties,et al.  Understanding Ambiguity in Requirements Engineering , 2005 .

[58]  Thomas Teufel,et al.  SAP R/3 Process Oriented Implementation: Iterative Process Prototyping , 1998 .

[59]  Bashar Nuseibeh,et al.  Analysing anaphoric ambiguity in natural language requirements , 2011, Requirements Engineering.

[60]  Colette Rolland,et al.  Guiding the Construction of Textual Use Case Specifications , 1998, Data Knowl. Eng..

[61]  Gerard Salton,et al.  A vector space model for automatic indexing , 1975, CACM.

[62]  Jean Véronis,et al.  Computational lexical semantics: Large neural networks for the resolution of lexical ambiguity , 1995 .

[63]  Marc Ehrig,et al.  Measuring Similarity between Semantic Business Process Models , 2007, APCCM.

[64]  Jörg Becker,et al.  Towards increased comparability of conceptual models - Enforcing naming conventions through domain thesauri and linguistic grammars , 2009, ECIS.

[65]  Leonardo Guerreiro Azevedo,et al.  Detection of naming convention violations in process models for different languages , 2013, Decis. Support Syst..

[66]  D. M. Berry,et al.  Translational ambiguity rephrased , 1988, TMI.

[67]  Hinrich Schütze,et al.  Automatic Word Sense Discrimination , 1998, Comput. Linguistics.

[68]  Julie Weeds,et al.  Unsupervised Acquisition of Predominant Word Senses , 2007, CL.

[69]  Jeffrey C. Carver,et al.  Evolving a Set of Techniques for OO Inspections , 1999 .

[70]  Alexander Dekhtyar,et al.  Information Retrieval , 2018, Lecture Notes in Computer Science.

[71]  Thomas H. Davenport,et al.  The New Industrial Engineering: Information Technology and Business Process Redesign , 2011 .

[72]  Erik Kamsties,et al.  Taming Ambiguity in Natural Language Requirements , 2005 .

[73]  Jörg Becker,et al.  Guidelines of Business Process Modeling , 2000, Business Process Management.

[74]  Colette Rolland,et al.  Guiding Goal Modeling Using Scenarios , 1998, IEEE Trans. Software Eng..

[75]  Hongyan Ma,et al.  Process-aware information systems: Bridging people and software through process technology , 2007, J. Assoc. Inf. Sci. Technol..

[76]  Fredrik Törner,et al.  Defects in automotive use cases , 2006, ISESE '06.

[77]  Patrick Delfmann,et al.  Supporting Distributed Conceptual Modelling through Naming Conventions - A Tool-based Linguistic Approach , 2009, Enterp. Model. Inf. Syst. Archit. Int. J. Concept. Model..

[78]  Martin Shepperd,et al.  An Improved Method for Label Matching in E-Assessment of Diagrams , 2009 .

[79]  Roland Mittermeir,et al.  A survey of software reuse libraries , 1998, Ann. Softw. Eng..

[80]  Giuseppe Lami QuARS: A Tool for Analyzing Requirements , 2005 .

[81]  Jan Mendling,et al.  Empirical Studies in Process Model Verification , 2009, Trans. Petri Nets Other Model. Concurr..

[82]  Benedikt Gleich,et al.  Ambiguity Detection: Towards a Tool Explaining Ambiguity Sources , 2010, REFSQ.

[83]  Mordechai Ben-Menachem,et al.  Writing effective use cases , 2001, SOEN.

[84]  Vincenzo Gervasi,et al.  On the Systematic Analysis of Natural Language Requirements with CIRCE , 2006, Automated Software Engineering.

[85]  Markus Pizka,et al.  Concise and consistent naming , 2005, 13th International Workshop on Program Comprehension (IWPC'05).

[86]  Ragnhild Van Der Straeten,et al.  Detecting and resolving model inconsistencies using transformation dependency analysis , 2006, MoDELS'06.

[87]  Remco M. Dijkman,et al.  Graph Matching Algorithms for Business Process Model Similarity Search , 2009, BPM.

[88]  Remco M. Dijkman,et al.  Probabilistic Optimization of Semantic Process Model Matching , 2012, BPM.

[89]  Stefania Gnesi,et al.  Applications of linguistic techniques for use case analysis , 2003, Requirements Engineering.

[90]  ResnikPhilip,et al.  Distinguishing systems and distinguishing senses: new evaluation methods for Word Sense Disambiguation , 1999 .

[91]  Remco M. Dijkman,et al.  Similarity of business process models: Metrics and evaluation , 2011, Inf. Syst..

[92]  J. Ross Quinlan,et al.  C4.5: Programs for Machine Learning , 1992 .

[93]  Christiane Fellbaum,et al.  Book Reviews: WordNet: An Electronic Lexical Database , 1999, CL.

[94]  Erik Kamsties,et al.  Higher quality requirements specifications through natural language patterns , 2003, Proceedings 2003 Symposium on Security and Privacy.

[95]  Julie Weeds,et al.  Finding Predominant Word Senses in Untagged Text , 2004, ACL.

[96]  Joseph Barjis,et al.  The importance of business process modeling in software systems design , 2008, Sci. Comput. Program..

[97]  Jan Mendling,et al.  On the refactoring of activity labels in business process models , 2012, Inf. Syst..

[98]  Jaap Gordijn,et al.  Business Modelling Is Not Process Modelling , 2000, ER.

[99]  Francis Chantree,et al.  Identifying Nocuous Ambiguities in Natural Language Requirements , 2006, 14th IEEE International Requirements Engineering Conference (RE'06).

[100]  A Straw,et al.  Guide to the Software Engineering Body of Knowledge , 1998 .

[101]  Jan Mendling,et al.  Seven process modeling guidelines (7PMG) , 2010, Inf. Softw. Technol..

[102]  Tom Mens,et al.  Analysing refactoring dependencies using graph transformation , 2007, Software & Systems Modeling.

[103]  Patrick Pantel,et al.  Discovering word senses from text , 2002, KDD.

[104]  Roberto Navigli,et al.  Word sense disambiguation: A survey , 2009, CSUR.

[105]  Henrik Leopold,et al.  Natural Language in Business Process Models , 2013, Lecture Notes in Business Information Processing.

[106]  George A. Miller,et al.  WordNet: A Lexical Database for English , 1995, HLT.

[107]  Remco M. Dijkman,et al.  Managing large collections of business process models - Current techniques and challenges , 2012, Comput. Ind..