High-throughput computational screening of thermal conductivity, Debye temperature, and Grüneisen parameter using a quasiharmonic Debye model
暂无分享,去创建一个
Marco Buongiorno Nardelli | Cormac Toher | Stefano Curtarolo | Mark Asta | Jose J. Plata | Ohad Levy | M. Nardelli | S. Curtarolo | O. Levy | C. Toher | M. Asta | M. Jong | Maarten de Jong | J. Plata
[1] Marco Buongiorno Nardelli,et al. A RESTful API for exchanging materials data in the AFLOWLIB.org consortium , 2014, 1403.2642.
[2] G. Madsen,et al. Modeling the thermal conductivities of the zinc antimonides ZnSb and Zn4Sb3 , 2014 .
[3] Stefano Curtarolo,et al. Finding Unprecedentedly Low-Thermal-Conductivity Half-Heusler Semiconductors via High-Throughput Materials Modeling , 2014, 1401.2439.
[4] Natalio Mingo,et al. Thermal conductivity of bulk and nanowire InAs, AlN, and BeO polymorphs from first principles , 2013 .
[5] Kristin A. Persson,et al. Commentary: The Materials Project: A materials genome approach to accelerating materials innovation , 2013 .
[6] C. Uher,et al. A Viewpoint on: First-Principles Determination of Ultrahigh Thermal Conductivity of Boron Arsenide: A Competitor for Diamond? , 2013 .
[7] T. L. Reinecke,et al. Ab initio thermal transport in compound semiconductors , 2013 .
[8] Marco Buongiorno Nardelli,et al. The high-throughput highway to computational materials design. , 2013, Nature materials.
[9] Anubhav Jain,et al. Python Materials Genomics (pymatgen): A robust, open-source python library for materials analysis , 2012 .
[10] Natalio Mingo,et al. Thermal conductivity of bulk and nanowire Mg2Si_{x}Sn_{1-x} alloys from first principles , 2012 .
[11] David J. Singh,et al. Study of the thermoelectric properties of lead selenide doped with boron, gallium, indium, or thallium. , 2012, Journal of the American Chemical Society.
[12] S. Curtarolo,et al. AFLOW: An automatic framework for high-throughput materials discovery , 2012, 1308.5715.
[13] B. Kozinsky,et al. Quasiharmonic Vibrational Properties of TiNiSn from Ab Initio Phonons , 2012, Journal of Electronic Materials.
[14] Natalio Mingo,et al. Thermal conductivity of diamond nanowires from first principles , 2012 .
[15] G. J. Snyder,et al. Phonon engineering through crystal chemistry , 2011 .
[16] E. Varesi,et al. The Design of Rewritable Ultrahigh Density Scanning-Probe Phase-Change Memories , 2011, IEEE Transactions on Nanotechnology.
[17] Anubhav Jain,et al. A high-throughput infrastructure for density functional theory calculations , 2011 .
[18] T. Finstad,et al. Influence of Ball-Milling, Nanostructuring, and Ag Inclusions on Thermoelectric Properties of ZnSb , 2010 .
[19] David Broido,et al. Intrinsic phonon relaxation times from first-principles studies of the thermal conductivities of Si and Ge , 2010 .
[20] Gernot Deinzer,et al. Ab initio theory of the lattice thermal conductivity in diamond , 2009 .
[21] N. Mingo,et al. Intrinsic lattice thermal conductivity of semiconductors from first principles , 2007 .
[22] Víctor Luaña,et al. GIBBS: isothermal-isobaric thermodynamics of solids from energy curves using a quasi-harmonic Debye model☆ , 2004 .
[23] M. Anis-ur-Rehman,et al. Measurement of Thermal Transport Properties with an Improved Transient Plane Source Technique , 2003 .
[24] Gernot Deinzer,et al. Ab initio calculation of the linewidth of various phonon modes in germanium and silicon , 2003 .
[25] Lian-Tuu Yeh,et al. Thermal management of microelectronic equipment : heat transfer theory, analysis methods, and design practices , 2002 .
[26] Subhash Shinde,et al. High Thermal Conductivity Materials , 2001 .
[27] J. Ziman. Electrons and Phonons: The Theory of Transport Phenomena in Solids , 2001 .
[28] S. Poon,et al. Thermoelectric properties of semimetallic (Zr, Hf)CoSb half-Heusler phases , 2000 .
[29] Donald T. Morelli,et al. Transport properties of pure and doped M NiSn ( M =Zr, Hf) , 1999 .
[30] C. Goldmann,et al. Efficient dopants for ZrNiSn-based thermoelectric materials , 1999 .
[31] M. Boćkowski,et al. Thermal properties of indium nitride , 1998 .
[32] Burke,et al. Generalized Gradient Approximation Made Simple. , 1996, Physical review letters.
[33] R. Franco,et al. THERMODYNAMICAL PROPERTIES OF SOLIDS FROM MICROSCOPIC THEORY : APPLICATIONS TO MGF2 AND AL2O3 , 1996 .
[34] Hafner,et al. Ab initio molecular dynamics for liquid metals. , 1995, Physical review. B, Condensed matter.
[35] C. Rincón,et al. Room‐Temperature Thermal Conductivity and Grüneisen Parameter of the I–III–VI2 Chalcopyrite Compounds , 1995 .
[36] Blöchl,et al. Projector augmented-wave method. , 1994, Physical review. B, Condensed matter.
[37] P. B. Allen. Zero-point and isotope shifts: Relation to thermal shifts , 1994 .
[38] M. Bukowinski. Introduction to the physics of the earth's interior , 1992 .
[39] K. Bohmhammel,et al. Specific heat, debye temperature, and belated properties of chalcopyrite semiconducting compounds CuGaSe2, CuGaTe2, and CuInTe2 , 1982 .
[40] H. A. Schneider,et al. Specific heat, Debye temperature, and related properties of compound semiconductors AIIBIVC 2v , 1981 .
[41] D. Cannell,et al. Specific heat of Cr 2 O 3 near the Nel temperature , 1977 .
[42] H. Monkhorst,et al. SPECIAL POINTS FOR BRILLOUIN-ZONE INTEGRATIONS , 1976 .
[43] J. L. Queisser,et al. Ternary Chalcopyrite Semiconductors: Growth, Electronic Properties, and Applications , 1976 .
[44] S. Abrahams,et al. Debye temperatures and cohesive properties , 1975 .
[45] J. G. Broerman,et al. Lattice Thermal Conductivity of Mercury Selenide , 1973 .
[46] D. Spitzer. Lattice thermal conductivity of semiconductors: A chemical bond approach , 1969 .
[47] Carl F. Cline,et al. Elastic Constants of Hexagonal BeO, ZnS, and CdSe , 1967 .
[48] J. Callaway. Model for Lattice Thermal Conductivity at Low Temperatures , 1959 .
[49] R. Kubo. Statistical-Mechanical Theory of Irreversible Processes : I. General Theory and Simple Applications to Magnetic and Conduction Problems , 1957 .
[50] Melville S. Green,et al. Markoff Random Processes and the Statistical Mechanics of Time‐Dependent Phenomena. II. Irreversible Processes in Fluids , 1954 .
[51] M. Dresselhaus,et al. Perspectives on thermoelectrics: from fundamentals to device applications , 2012 .
[52] M. J.,et al. Thermodynamical properties of solids frommicroscopic theory : applications to MgF 2 andAl 2 O 3 , 2007 .
[53] Donald T. Morelli,et al. High Lattice Thermal Conductivity Solids , 2006 .
[54] R. Cava,et al. Thermoelectric properties of pure and doped FeMSb (M=V,Nb) , 2000 .
[55] J. D. Beasley,et al. Thermal conductivities of some novel nonlinear optical materials. , 1994, Applied optics.
[56] Robert O. Pohl,et al. The intrinsic thermal conductivity of AIN , 1987 .
[57] G. A. Slack,et al. The Thermal Conductivity of Nonmetallic Crystals , 1979 .
[58] G. A. Slack,et al. Thermal expansion of some diamondlike crystals , 1975 .
[59] Gene Simmons,et al. Thermal conductivity of rock-forming minerals☆ , 1969 .
[60] K. Masumoto,et al. The Preparation and Properties of ZnSiAs 2 , ZnGeP 2 and CdGeP 2 Semiconducting Compounds , 1966 .
[61] G. V. Chester,et al. Solid State Physics , 2000 .