High-throughput computational screening of thermal conductivity, Debye temperature, and Grüneisen parameter using a quasiharmonic Debye model

The quasiharmonic Debye approximation has been implemented within the aflow and Materials Project frameworks for high-throughput computational materials science (Automatic Gibbs Library, agl), in order to calculate thermal properties such as the Debye temperature and the thermal conductivity of materials. We demonstrate that the agl method, which is significantly cheaper computationally compared to the fully ab initio approach, can reliably predict the ordinal ranking of the thermal conductivity for several different classes of semiconductor materials. In particular, a high Pearson (i.e., linear) correlation is obtained between the experimental and agl computed values of the lattice thermal conductivity for a set of 75 compounds including materials with cubic, hexagonal, rhombohedral, and tetragonal symmetry.

[1]  Marco Buongiorno Nardelli,et al.  A RESTful API for exchanging materials data in the AFLOWLIB.org consortium , 2014, 1403.2642.

[2]  G. Madsen,et al.  Modeling the thermal conductivities of the zinc antimonides ZnSb and Zn4Sb3 , 2014 .

[3]  Stefano Curtarolo,et al.  Finding Unprecedentedly Low-Thermal-Conductivity Half-Heusler Semiconductors via High-Throughput Materials Modeling , 2014, 1401.2439.

[4]  Natalio Mingo,et al.  Thermal conductivity of bulk and nanowire InAs, AlN, and BeO polymorphs from first principles , 2013 .

[5]  Kristin A. Persson,et al.  Commentary: The Materials Project: A materials genome approach to accelerating materials innovation , 2013 .

[6]  C. Uher,et al.  A Viewpoint on: First-Principles Determination of Ultrahigh Thermal Conductivity of Boron Arsenide: A Competitor for Diamond? , 2013 .

[7]  T. L. Reinecke,et al.  Ab initio thermal transport in compound semiconductors , 2013 .

[8]  Marco Buongiorno Nardelli,et al.  The high-throughput highway to computational materials design. , 2013, Nature materials.

[9]  Anubhav Jain,et al.  Python Materials Genomics (pymatgen): A robust, open-source python library for materials analysis , 2012 .

[10]  Natalio Mingo,et al.  Thermal conductivity of bulk and nanowire Mg2Si_{x}Sn_{1-x} alloys from first principles , 2012 .

[11]  David J. Singh,et al.  Study of the thermoelectric properties of lead selenide doped with boron, gallium, indium, or thallium. , 2012, Journal of the American Chemical Society.

[12]  S. Curtarolo,et al.  AFLOW: An automatic framework for high-throughput materials discovery , 2012, 1308.5715.

[13]  B. Kozinsky,et al.  Quasiharmonic Vibrational Properties of TiNiSn from Ab Initio Phonons , 2012, Journal of Electronic Materials.

[14]  Natalio Mingo,et al.  Thermal conductivity of diamond nanowires from first principles , 2012 .

[15]  G. J. Snyder,et al.  Phonon engineering through crystal chemistry , 2011 .

[16]  E. Varesi,et al.  The Design of Rewritable Ultrahigh Density Scanning-Probe Phase-Change Memories , 2011, IEEE Transactions on Nanotechnology.

[17]  Anubhav Jain,et al.  A high-throughput infrastructure for density functional theory calculations , 2011 .

[18]  T. Finstad,et al.  Influence of Ball-Milling, Nanostructuring, and Ag Inclusions on Thermoelectric Properties of ZnSb , 2010 .

[19]  David Broido,et al.  Intrinsic phonon relaxation times from first-principles studies of the thermal conductivities of Si and Ge , 2010 .

[20]  Gernot Deinzer,et al.  Ab initio theory of the lattice thermal conductivity in diamond , 2009 .

[21]  N. Mingo,et al.  Intrinsic lattice thermal conductivity of semiconductors from first principles , 2007 .

[22]  Víctor Luaña,et al.  GIBBS: isothermal-isobaric thermodynamics of solids from energy curves using a quasi-harmonic Debye model☆ , 2004 .

[23]  M. Anis-ur-Rehman,et al.  Measurement of Thermal Transport Properties with an Improved Transient Plane Source Technique , 2003 .

[24]  Gernot Deinzer,et al.  Ab initio calculation of the linewidth of various phonon modes in germanium and silicon , 2003 .

[25]  Lian-Tuu Yeh,et al.  Thermal management of microelectronic equipment : heat transfer theory, analysis methods, and design practices , 2002 .

[26]  Subhash Shinde,et al.  High Thermal Conductivity Materials , 2001 .

[27]  J. Ziman Electrons and Phonons: The Theory of Transport Phenomena in Solids , 2001 .

[28]  S. Poon,et al.  Thermoelectric properties of semimetallic (Zr, Hf)CoSb half-Heusler phases , 2000 .

[29]  Donald T. Morelli,et al.  Transport properties of pure and doped M NiSn ( M =Zr, Hf) , 1999 .

[30]  C. Goldmann,et al.  Efficient dopants for ZrNiSn-based thermoelectric materials , 1999 .

[31]  M. Boćkowski,et al.  Thermal properties of indium nitride , 1998 .

[32]  Burke,et al.  Generalized Gradient Approximation Made Simple. , 1996, Physical review letters.

[33]  R. Franco,et al.  THERMODYNAMICAL PROPERTIES OF SOLIDS FROM MICROSCOPIC THEORY : APPLICATIONS TO MGF2 AND AL2O3 , 1996 .

[34]  Hafner,et al.  Ab initio molecular dynamics for liquid metals. , 1995, Physical review. B, Condensed matter.

[35]  C. Rincón,et al.  Room‐Temperature Thermal Conductivity and Grüneisen Parameter of the I–III–VI2 Chalcopyrite Compounds , 1995 .

[36]  Blöchl,et al.  Projector augmented-wave method. , 1994, Physical review. B, Condensed matter.

[37]  P. B. Allen Zero-point and isotope shifts: Relation to thermal shifts , 1994 .

[38]  M. Bukowinski Introduction to the physics of the earth's interior , 1992 .

[39]  K. Bohmhammel,et al.  Specific heat, debye temperature, and belated properties of chalcopyrite semiconducting compounds CuGaSe2, CuGaTe2, and CuInTe2 , 1982 .

[40]  H. A. Schneider,et al.  Specific heat, Debye temperature, and related properties of compound semiconductors AIIBIVC 2v , 1981 .

[41]  D. Cannell,et al.  Specific heat of Cr 2 O 3 near the Nel temperature , 1977 .

[42]  H. Monkhorst,et al.  SPECIAL POINTS FOR BRILLOUIN-ZONE INTEGRATIONS , 1976 .

[43]  J. L. Queisser,et al.  Ternary Chalcopyrite Semiconductors: Growth, Electronic Properties, and Applications , 1976 .

[44]  S. Abrahams,et al.  Debye temperatures and cohesive properties , 1975 .

[45]  J. G. Broerman,et al.  Lattice Thermal Conductivity of Mercury Selenide , 1973 .

[46]  D. Spitzer Lattice thermal conductivity of semiconductors: A chemical bond approach , 1969 .

[47]  Carl F. Cline,et al.  Elastic Constants of Hexagonal BeO, ZnS, and CdSe , 1967 .

[48]  J. Callaway Model for Lattice Thermal Conductivity at Low Temperatures , 1959 .

[49]  R. Kubo Statistical-Mechanical Theory of Irreversible Processes : I. General Theory and Simple Applications to Magnetic and Conduction Problems , 1957 .

[50]  Melville S. Green,et al.  Markoff Random Processes and the Statistical Mechanics of Time‐Dependent Phenomena. II. Irreversible Processes in Fluids , 1954 .

[51]  M. Dresselhaus,et al.  Perspectives on thermoelectrics: from fundamentals to device applications , 2012 .

[52]  M. J.,et al.  Thermodynamical properties of solids frommicroscopic theory : applications to MgF 2 andAl 2 O 3 , 2007 .

[53]  Donald T. Morelli,et al.  High Lattice Thermal Conductivity Solids , 2006 .

[54]  R. Cava,et al.  Thermoelectric properties of pure and doped FeMSb (M=V,Nb) , 2000 .

[55]  J. D. Beasley,et al.  Thermal conductivities of some novel nonlinear optical materials. , 1994, Applied optics.

[56]  Robert O. Pohl,et al.  The intrinsic thermal conductivity of AIN , 1987 .

[57]  G. A. Slack,et al.  The Thermal Conductivity of Nonmetallic Crystals , 1979 .

[58]  G. A. Slack,et al.  Thermal expansion of some diamondlike crystals , 1975 .

[59]  Gene Simmons,et al.  Thermal conductivity of rock-forming minerals☆ , 1969 .

[60]  K. Masumoto,et al.  The Preparation and Properties of ZnSiAs 2 , ZnGeP 2 and CdGeP 2 Semiconducting Compounds , 1966 .

[61]  G. V. Chester,et al.  Solid State Physics , 2000 .