The EEG microstate topography is predominantly determined by intracortical sources in the alpha band

[1]  K. H. Slatter Alpha rhythms and mental imagery , 1960 .

[2]  W M Herrmann,et al.  Reflections on the topics: EEG frequency bands and regulation of vigilance. , 1979, Pharmakopsychiatrie, Neuro-Psychopharmakologie.

[3]  D. Lehmann,et al.  Reference-free identification of components of checkerboard-evoked multichannel potential fields. , 1980, Electroencephalography and clinical neurophysiology.

[4]  A. Walker Electroencephalography, Basic Principles, Clinical Applications and Related Fields , 1982 .

[5]  Ettore Lettich,et al.  Ten Percent Electrode System for Topographic Studies of Spontaneous and Evoked EEG Activities , 1985 .

[6]  D Lehmann,et al.  EEG alpha map series: brain micro-states by space-oriented adaptive segmentation. , 1987, Electroencephalography and clinical neurophysiology.

[7]  M R Nuwer,et al.  Recording Electrode Site Nomenclature , 1987, Journal of clinical neurophysiology : official publication of the American Electroencephalographic Society.

[8]  Dietrich Lehmann,et al.  Brain Electric Microstates and Cognition: The Atoms of Thought , 1990 .

[9]  D. Lehmann,et al.  Adaptive segmentation of spontaneous EEG map series into spatially defined microstates. , 1993, International journal of psychophysiology : official journal of the International Organization of Psychophysiology.

[10]  D. Lehmann Psychiatry and Microstates of the Brain’s Electric Field: Towards the “Atoms of Thought and Emotion” , 1993 .

[11]  S. Kosslyn,et al.  Reactivity of magnetic parieto-occipital alpha rhythm during visual imagery. , 1995, Electroencephalography and clinical neurophysiology.

[12]  D. Lehmann,et al.  Segmentation of brain electrical activity into microstates: model estimation and validation , 1995, IEEE Transactions on Biomedical Engineering.

[13]  G. Pfurtscheller,et al.  Event-related synchronization (ERS) in the alpha band--an electrophysiological correlate of cortical idling: a review. , 1996, International journal of psychophysiology : official journal of the International Organization of Psychophysiology.

[14]  S. Marple Computing the discrete-time 'analytic' signal via FFT , 1997 .

[15]  Alexander D. Poularikas,et al.  The handbook of formulas and tables for signal processing , 1998 .

[16]  Karl J. Friston,et al.  Multisubject fMRI Studies and Conjunction Analyses , 1999, NeuroImage.

[17]  Dietrich Lehmann,et al.  A deviant EEG brain microstate in acute, neuroleptic-naive schizophrenics at rest , 1999, European Archives of Psychiatry and Clinical Neuroscience.

[18]  Jeffrey M. Hausdorff,et al.  Physionet: Components of a New Research Resource for Complex Physiologic Signals". Circu-lation Vol , 2000 .

[19]  G L Shulman,et al.  INAUGURAL ARTICLE by a Recently Elected Academy Member:A default mode of brain function , 2001 .

[20]  Dietrich Lehmann,et al.  Millisecond by Millisecond, Year by Year: Normative EEG Microstates and Developmental Stages , 2002, NeuroImage.

[21]  Thomas E. Nichols,et al.  Nonparametric permutation tests for functional neuroimaging: A primer with examples , 2002, Human brain mapping.

[22]  D Lehmann,et al.  Spatial organization of EEG activity from alertness to sleep stage 2 in old and younger subjects , 2002, Journal of sleep research.

[23]  G Pfurtscheller,et al.  Induced Oscillations in the Alpha Band: Functional Meaning , 2003, Epilepsia.

[24]  Lorena R. R. Gianotti,et al.  Chronic schizophrenics with positive symptomatology have shortened EEG microstate durations , 2003, Clinical Neurophysiology.

[25]  A. Bruns Fourier-, Hilbert- and wavelet-based signal analysis: are they really different approaches? , 2004, Journal of Neuroscience Methods.

[26]  N. Birbaumer,et al.  BCI2000: a general-purpose brain-computer interface (BCI) system , 2004, IEEE Transactions on Biomedical Engineering.

[27]  T. Koenig,et al.  EEG microstate duration and syntax in acute, medication-naïve, first-episode schizophrenia: a multi-center study , 2005, Psychiatry Research: Neuroimaging.

[28]  Jesper Andersson,et al.  Valid conjunction inference with the minimum statistic , 2005, NeuroImage.

[29]  Roberto D. Pascual-Marqui,et al.  Discrete, 3D distributed, linear imaging methods of electric neuronal activity. Part 1: exact, zero error localization , 2007, 0710.3341.

[30]  Dietrich Lehmann,et al.  Classes of Multichannel EEG Microstates in Light and Deep Hypnotic Conditions , 2007, Brain Topography.

[31]  Christoph M. Michel,et al.  A mouse model for studying large-scale neuronal networks using EEG mapping techniques , 2008, NeuroImage.

[32]  Dietrich Lehmann,et al.  EEG microstates , 2009, Scholarpedia.

[33]  Thomas Koenig,et al.  Electrical Neuroimaging in the time domain , 2009 .

[34]  Dimitri Van De Ville,et al.  BOLD correlates of EEG topography reveal rapid resting-state network dynamics , 2010, NeuroImage.

[35]  Dietrich Lehmann,et al.  Core networks for visual-concrete and abstract thought content: A brain electric microstate analysis , 2010, NeuroImage.

[36]  Tracy Warbrick,et al.  Spontaneous brain activity and EEG microstates. A novel EEG/fMRI analysis approach to explore resting-state networks , 2010, NeuroImage.

[37]  D. Hubl,et al.  Resting-state EEG in schizophrenia: Auditory verbal hallucinations are related to shortening of specific microstates , 2011, Clinical Neurophysiology.

[38]  Dietrich Lehmann,et al.  EEG Microstates During Resting Represent Personality Differences , 2011, Brain Topography.

[39]  Thorsten Fehr A hybrid model for the neural representation of complex mental processing in the human brain , 2012, Cognitive Neurodynamics.

[40]  Christoph M. Michel,et al.  EEG microstates of wakefulness and NREM sleep , 2012, NeuroImage.

[41]  Thomas Dierks,et al.  EEG microstates associated with salience and frontoparietal networks in frontotemporal dementia, schizophrenia and Alzheimer’s disease , 2013, Clinical Neurophysiology.

[42]  Dietrich Lehmann,et al.  The resting microstate networks (RMN): cortical distributions, dynamics, and frequency specific information flow , 2014, 1411.1949.

[43]  Dietrich Lehmann,et al.  Resting-state connectivity in the prodromal phase of schizophrenia: Insights from EEG microstates , 2014, Schizophrenia Research.

[44]  Alvaro Pascual-Leone,et al.  Reliability of Resting-State Microstate Features in Electroencephalography , 2014, PloS one.

[45]  Christoph M. Michel,et al.  Deviant dynamics of EEG resting state pattern in 22q11.2 deletion syndrome adolescents: A vulnerability marker of schizophrenia? , 2014, Schizophrenia Research.

[46]  Á. Pascual-Leone,et al.  Microstates in resting-state EEG: Current status and future directions , 2015, Neuroscience & Biobehavioral Reviews.

[47]  Robert Oostenveld,et al.  Alpha power indexes task-related networks on large and small scales: A multimodal ECoG study in humans and a non-human primate , 2016, NeuroImage.

[48]  Dietrich Lehmann,et al.  The functional significance of EEG microstates—Associations with modalities of thinking , 2016, NeuroImage.

[49]  Thomas Koenig,et al.  15 Years of Microstate Research in Schizophrenia – Where Are We? A Meta-Analysis , 2016, Front. Psychiatry.

[50]  Patricia Milz Keypy – An Open Source Library For EEG Microstate Analysis , 2016, European Psychiatry.

[51]  Thomas Koenig,et al.  Association Between Resting-State Microstates and Ratings on the Amsterdam Resting-State Questionnaire , 2017, Brain Topography.

[52]  Daniel Brandeis,et al.  Inappropriate assumptions about EEG state changes and their impact on the quantification of EEG state dynamics , 2016, NeuroImage.

[53]  T. Koenig State dependent information processing, microstates and schizophrenia , 2016 .

[54]  Dietrich Lehmann,et al.  Modalities of Thinking: State and Trait Effects on Cross-Frequency Functional Independent Brain Networks , 2016, Brain Topography.

[55]  Lorena R. R. Gianotti,et al.  Temporal Characteristics of EEG Microstates Mediate Trial-by-Trial Risk Taking , 2017, Brain Topography.

[56]  Benjamin A. Seitzman,et al.  Cognitive manipulation of brain electric microstates , 2017, NeuroImage.