Contribution of feedforward, lateral and feedback connections to the classical receptive field center and extra-classical receptive field surround of primate V1 neurons.

[1]  Alessandra Angelucci,et al.  Contribution of feedforward thalamic afferents and corticogeniculate feedback to the spatial summation area of macaque V1 and LGN , 2006, The Journal of comparative neurology.

[2]  K. Obermayer,et al.  The Role of Feedback in Shaping the Extra-Classical Receptive Field of Cortical Neurons: A Recurrent Network Model , 2006, The Journal of Neuroscience.

[3]  P. Lennie,et al.  Early and Late Mechanisms of Surround Suppression in Striate Cortex of Macaque , 2005, The Journal of Neuroscience.

[4]  M. Carandini,et al.  The Suppressive Field of Neurons in Lateral Geniculate Nucleus , 2005, The Journal of Neuroscience.

[5]  D. Snodderly,et al.  Orientation and Direction Selectivity of Neurons in V1 of Alert Monkeys: Functional Relationships and Laminar Distributions , 2005 .

[6]  Lawrence C. Sincich,et al.  The circuitry of V1 and V2: integration of color, form, and motion. , 2005, Annual review of neuroscience.

[7]  S. Ullman,et al.  Retinotopic Axis Specificity and Selective Clustering of Feedback Projections from V2 to V1 in the Owl Monkey , 2005, The Journal of Neuroscience.

[8]  Kathleen S Rockland,et al.  Region specific micromodularity in the uppermost layers in primate cerebral cortex. , 2004, Cerebral cortex.

[9]  L. Palmer,et al.  Contrast-dependent spatial summation in the lateral geniculate nucleus and retina of the cat. , 2004, Journal of neurophysiology.

[10]  Robert Shapley,et al.  A new view of the primary visual cortex , 2004, Neural Networks.

[11]  H. Ozeki,et al.  Relationship between Excitation and Inhibition Underlying Size Tuning and Contextual Response Modulation in the Cat Primary Visual Cortex , 2004, The Journal of Neuroscience.

[12]  Lawrence C. Sincich,et al.  Complete flatmounting of the macaque cerebral cortex , 2003, Visual Neuroscience.

[13]  K. Rockland,et al.  Intrinsic collaterals of layer 6 meynert cells and functional columns in primate v1 , 2003, Neuroscience.

[14]  J. Movshon,et al.  Time Course and Time-Distance Relationships for Surround Suppression in Macaque V1 Neurons , 2003, The Journal of Neuroscience.

[15]  S. Treue Visual attention: the where, what, how and why of saliency , 2003, Current Opinion in Neurobiology.

[16]  K. Rockland Feedback Connections: Splitting the Arrow , 2003 .

[17]  J. Kaas,et al.  The Primate visual system , 2003 .

[18]  Lawrence C. Sincich,et al.  Independent Projection Streams from Macaque Striate Cortex to the Second Visual Area and Middle Temporal Area , 2003, The Journal of Neuroscience.

[19]  David Fitzpatrick,et al.  Emergent Properties of Layer 2/3 Neurons Reflect the Collinear Arrangement of Horizontal Connections in Tree Shrew Visual Cortex , 2003, The Journal of Neuroscience.

[20]  J. Bullier,et al.  Reaching beyond the classical receptive field of V1 neurons: horizontal or feedback axons? , 2003, Journal of Physiology-Paris.

[21]  Frank Tong,et al.  Cognitive neuroscience: Primary visual cortex and visual awareness , 2003, Nature Reviews Neuroscience.

[22]  K. Rockland,et al.  Honeycomb-Like Mosaic at the Border of Layers 1 and 2 in the Cerebral Cortex , 2003, The Journal of Neuroscience.

[23]  A. Grinvald,et al.  Long-term voltage-sensitive dye imaging reveals cortical dynamics in behaving monkeys. , 2002, Journal of neurophysiology.

[24]  Jean Bennett,et al.  Lateral Connectivity and Contextual Interactions in Macaque Primary Visual Cortex , 2002, Neuron.

[25]  J. Movshon,et al.  Nature and interaction of signals from the receptive field center and surround in macaque V1 neurons. , 2002, Journal of neurophysiology.

[26]  J. B. Levitt,et al.  Circuits for Local and Global Signal Integration in Primary Visual Cortex , 2002, The Journal of Neuroscience.

[27]  J. B. Levitt,et al.  The spatial extent over which neurons in macaque striate cortex pool visual signals , 2002, Visual Neuroscience.

[28]  R. Shapley,et al.  Orientation Selectivity in Macaque V1: Diversity and Laminar Dependence , 2002, The Journal of Neuroscience.

[29]  Lawrence C. Sincich,et al.  Divided by Cytochrome Oxidase: A Map of the Projections from V1 to V2 in Macaques , 2002, Science.

[30]  Siegrid Löwel,et al.  GABA-inactivation attenuates colinear facilitation in cat primary visual cortex , 2002, Experimental Brain Research.

[31]  Paul R. Martin,et al.  Extraclassical Receptive Field Properties of Parvocellular, Magnocellular, and Koniocellular Cells in the Primate Lateral Geniculate Nucleus , 2002, The Journal of Neuroscience.

[32]  G. Blasdel,et al.  Functional Retinotopy of Monkey Visual Cortex , 2001, The Journal of Neuroscience.

[33]  Christian Wehrhahn,et al.  Neuronal responses from beyond the classic receptive field in V1 of alert monkeys , 2001, Experimental Brain Research.

[34]  Lawrence C. Sincich,et al.  Oriented Axon Projections in Primary Visual Cortex of the Monkey , 2001, The Journal of Neuroscience.

[35]  U Polat,et al.  Facilitation and suppression of single striate-cell activity by spatially discrete pattern stimuli presented beyond the receptive field , 2001, Visual Neuroscience.

[36]  R. Shapley,et al.  Visual spatial characterization of macaque V1 neurons. , 2001, Journal of neurophysiology.

[37]  U. Polat,et al.  Contrast response characteristics of long-range lateral interactions in cat striate cortex , 2001, Neuroreport.

[38]  J. Bullier,et al.  Feedforward and feedback connections between areas V1 and V2 of the monkey have similar rapid conduction velocities. , 2001, Journal of neurophysiology.

[39]  A. Derrington,et al.  Long-range interactions in the lateral geniculate nucleus of the New-World monkey, Callithrix jacchus , 2001, Visual Neuroscience.

[40]  D. Fitzpatrick Seeing beyond the receptive field in primary visual cortex , 2000, Current Opinion in Neurobiology.

[41]  Shaul Hochstein,et al.  The spread of attention and learning in feature search: effects of target distribution and task difficulty , 2000, Vision Research.

[42]  D. V. van Essen,et al.  Response profiles to texture border patterns in area V1 , 2000, Visual Neuroscience.

[43]  Y Watanabe,et al.  Properties of Horizontal and Vertical Inputs to Pyramidal Cells in the Superficial Layers of the Cat Visual Cortex , 2000, The Journal of Neuroscience.

[44]  C Wehrhahn,et al.  Contextual influence on orientation discrimination of humans and responses of neurons in V1 of alert monkeys. , 2000, Journal of neurophysiology.

[45]  M. Sur,et al.  Dynamic properties of recurrent inhibition in primary visual cortex: contrast and orientation dependence of contextual effects. , 2000, Journal of neurophysiology.

[46]  D. Field,et al.  Integration of contours: new insights , 1999, Trends in Cognitive Sciences.

[47]  G Westheimer,et al.  Dynamics of spatial summation in primary visual cortex of alert monkeys. , 1999, Proceedings of the National Academy of Sciences of the United States of America.

[48]  A. Derrington,et al.  Long-range interactions modulate the contrast gain in the lateral geniculate nucleus of cats , 1999, Visual Neuroscience.

[49]  R. Shapley,et al.  Contrast's effect on spatial summation by macaque V1 neurons , 1999, Nature Neuroscience.

[50]  V. Casagrande,et al.  Relationships between cytochrome oxidase (CO) blobs in primate primary visual cortex (V1) and the distribution of neurons projecting to the middle temporal area (MT) , 1999, The Journal of comparative neurology.

[51]  Victor A. F. Lamme,et al.  Separate processing dynamics for texture elements, boundaries and surfaces in primary visual cortex of the macaque monkey. , 1999, Cerebral cortex.

[52]  C. Gray,et al.  Cellular Mechanisms Contributing to Response Variability of Cortical Neurons In Vivo , 1999, The Journal of Neuroscience.

[53]  J. B. Levitt,et al.  A model for the intracortical origin of orientation preference and tuning in macaque striate cortex , 1999, Visual Neuroscience.

[54]  C. Gilbert,et al.  Attention Modulates Contextual Influences in the Primary Visual Cortex of Alert Monkeys , 1999, Neuron.

[55]  J. B. Levitt,et al.  A model for the depth-dependence of receptive field size and contrast sensitivity of cells in layer 4C of macaque striate cortex , 1999, Vision Research.

[56]  V. Bringuier,et al.  Horizontal propagation of visual activity in the synaptic integration field of area 17 neurons. , 1999, Science.

[57]  D. V. van Essen,et al.  Response modulation by texture surround in primate area V1: Correlates of “popout” under anesthesia , 1999, Visual Neuroscience.

[58]  J. C. Anderson,et al.  The Connection from Cortical Area V1 to V5: A Light and Electron Microscopic Study , 1998, The Journal of Neuroscience.

[59]  J. M. Hupé,et al.  Cortical feedback improves discrimination between figure and background by V1, V2 and V3 neurons , 1998, Nature.

[60]  Victor A. F. Lamme,et al.  Feedforward, horizontal, and feedback processing in the visual cortex , 1998, Current Opinion in Neurobiology.

[61]  C. Blakemore,et al.  Different mechanisms underlie three inhibitory phenomena in cat area 17 , 1998, Vision Research.

[62]  E. Todorov,et al.  A local circuit approach to understanding integration of long-range inputs in primary visual cortex. , 1998, Cerebral cortex.

[63]  U. Polat,et al.  Collinear stimuli regulate visual responses depending on cell's contrast threshold , 1998, Nature.

[64]  C. Koch,et al.  Constraints on cortical and thalamic projections: the no-strong-loops hypothesis , 1998, Nature.

[65]  A. Burkhalter,et al.  A Polysynaptic Feedback Circuit in Rat Visual Cortex , 1997, The Journal of Neuroscience.

[66]  J. Kremers,et al.  Receptive field dimensions of lateral geniculate cells in the common marmoset (Callithrix jacchus) , 1997, Vision Research.

[67]  W Singer,et al.  The Perceptual Grouping Criterion of Colinearity is Reflected by Anisotropies of Connections in the Primary Visual Cortex , 1997, The European journal of neuroscience.

[68]  J. B. Levitt,et al.  Contrast dependence of contextual effects in primate visual cortex , 1997, nature.

[69]  D. Fitzpatrick,et al.  Orientation Selectivity and the Arrangement of Horizontal Connections in Tree Shrew Striate Cortex , 1997, The Journal of Neuroscience.

[70]  A. Burkhalter,et al.  Different Balance of Excitation and Inhibition in Forward and Feedback Circuits of Rat Visual Cortex , 1996, The Journal of Neuroscience.

[71]  Andreas Burkhalter,et al.  Microcircuitry of forward and feedback connections within rat visual cortex , 1996, The Journal of comparative neurology.

[72]  J. B. Levitt,et al.  Anatomical substrates for early stages in cortical processing of visual information in the macaque monkey , 1996, Behavioural Brain Research.

[73]  M. Sur,et al.  Anterograde axonal tracing with the subunit B of cholera toxin: a highly sensitive immunohistochemical protocol for revealing fine axonal morphology in adult and neonatal brains , 1996, Journal of Neuroscience Methods.

[74]  J. B. Levitt,et al.  Relation between patterns of intrinsic lateral connectivity, ocular dominance, and cytochrome oxidase-reactive regions in macaque monkey striate cortex. , 1996, Cerebral cortex.

[75]  C. Gilbert,et al.  Spatial integration and cortical dynamics. , 1996, Proceedings of the National Academy of Sciences of the United States of America.

[76]  A. Burkhalter,et al.  Patterns of synaptic activity in forward and feedback pathways within rat visual cortex. , 1995, Journal of neurophysiology.

[77]  J. B. Levitt,et al.  Cells and circuits contributing to functional properties in area V1 of macaque monkey cerebral cortex: bases for neuroanatomically realistic models. , 1995, Journal of anatomy.

[78]  H. Jones,et al.  Visual cortical mechanisms detecting focal orientation discontinuities , 1995, Nature.

[79]  C. Gilbert,et al.  Improvement in visual sensitivity by changes in local context: Parallel studies in human observers and in V1 of alert monkeys , 1995, Neuron.

[80]  P A Salin,et al.  Spatial reciprocity of connections between areas 17 and 18 in the cat. , 1995, Canadian journal of physiology and pharmacology.

[81]  A. Leventhal,et al.  Concomitant sensitivity to orientation, direction, and color of cells in layers 2, 3, and 4 of monkey striate cortex , 1995, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[82]  Victor A. F. Lamme The neurophysiology of figure-ground segregation in primary visual cortex , 1995, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[83]  V. Casagrande A third parallel visual pathway to primate area V1 , 1994, Trends in Neurosciences.

[84]  R. Frostig,et al.  Cortical point-spread function and long-range lateral interactions revealed by real-time optical imaging of macaque monkey primary visual cortex , 1994, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[85]  T. Yoshioka,et al.  A neurochemically distinct third channel in the macaque dorsal lateral geniculate nucleus. , 1994, Science.

[86]  A. Grinvald,et al.  Relationship between intrinsic connections and functional architecture revealed by optical imaging and in vivo targeted biocytin injections in primate striate cortex. , 1993, Proceedings of the National Academy of Sciences of the United States of America.

[87]  D. V. van Essen,et al.  Neuronal responses to static texture patterns in area V1 of the alert macaque monkey. , 1992, Journal of neurophysiology.

[88]  R. Douglas,et al.  A functional microcircuit for cat visual cortex. , 1991, The Journal of physiology.

[89]  C. Gilbert,et al.  Synaptic physiology of horizontal connections in the cat's visual cortex , 1991, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[90]  T. Wiesel,et al.  Targets of horizontal connections in macaque primary visual cortex , 1991, The Journal of comparative neurology.

[91]  M. Mignard,et al.  Paths of information flow through visual cortex. , 1991, Science.

[92]  T. Wiesel,et al.  The influence of contextual stimuli on the orientation selectivity of cells in primary visual cortex of the cat , 1990, Vision Research.

[93]  D. Whitteridge,et al.  Arborisation pattern and postsynaptic targets of physiologically identified thalamocortical afferents in striate cortex of the macaque monkey , 1989, The Journal of comparative neurology.

[94]  H. Kennedy,et al.  Topography of the afferent connectivity of area 17 in the macaque monkey: A double‐labelling study , 1986, The Journal of comparative neurology.

[95]  Leslie G. Ungerleider,et al.  Cortical connections of visual area MT in the macaque , 1986, The Journal of comparative neurology.

[96]  John H. R. Maunsell,et al.  The visual field representation in striate cortex of the macaque monkey: Asymmetries, anisotropies, and individual variability , 1984, Vision Research.

[97]  A. J. Parker,et al.  Contrast sensitivity and orientation selectivity in lamina IV of the striate cortex of Old World monkeys , 1984, Experimental Brain Research.

[98]  G. Blasdel,et al.  Physiological organization of layer 4 in macaque striate cortex , 1984, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[99]  John H. R. Maunsell,et al.  The connections of the middle temporal visual area (MT) and their relationship to a cortical hierarchy in the macaque monkey , 1983, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[100]  G. Blasdel,et al.  Termination of afferent axons in macaque striate cortex , 1983, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[101]  J. Lund,et al.  Intrinsic laminar lattice connections in primate visual cortex , 1983, The Journal of comparative neurology.

[102]  P. Schiller,et al.  Effect of cooling area 18 on striate cortex cells in the squirrel monkey. , 1982, Journal of neurophysiology.

[103]  J Bullier,et al.  Ordinal position and afferent input of neurons in monkey striate cortex , 1980, The Journal of comparative neurology.

[104]  K. Rockland,et al.  Laminar origins and terminations of cortical connections of the occipital lobe in the rhesus monkey , 1979, Brain Research.

[105]  M. Ogren,et al.  The neurological organization of pathways between the dorsal lateral geniculate nucleus and visual cortex in old world and new world primates , 1978, The Journal of comparative neurology.

[106]  J. Nelson,et al.  Orientation-selective inhibition from beyond the classic visual receptive field , 1978, Brain Research.

[107]  R. Doty,et al.  Foveal striate cortex of behaving monkey: single-neuron responses to square-wave gratings during fixation of gaze. , 1977, Journal of neurophysiology.

[108]  A. Peters,et al.  The projection of the lateral geniculate nucleus to area 17 of the rat cerebral cortex. I. General description , 1976, Journal of neurocytology.

[109]  D. Hubel,et al.  Laminar and columnar distribution of geniculo‐cortical fibers in the macaque monkey , 1972, The Journal of comparative neurology.

[110]  L. Garey A light and electron microscopic study of the visual cortex of the cat and monkey , 1971, Proceedings of the Royal Society of London. Series B. Biological Sciences.

[111]  T. Powell,et al.  An experimental study of the termination of the lateral geniculo–cortical pathway in the cat and monkey , 1971, Proceedings of the Royal Society of London. Series B. Biological Sciences.

[112]  C. Blakemore,et al.  The neural mechanism of binocular depth discrimination , 1967, The Journal of physiology.

[113]  N. Lavie,et al.  Double dissociation of V1 and V5/MT activity in visual awareness. , 2005, Cerebral cortex.

[114]  J. Maunsell,et al.  State dependent activity in monkey visual cortex , 2004, Experimental Brain Research.

[115]  R. Bauer,et al.  Laminar distribution of preferred orientations in foveal striate cortex of the monkey , 2004, Experimental Brain Research.

[116]  C. Blakemore,et al.  Lateral inhibition between orientation detectors in the cat's visual cortex , 2004, Experimental Brain Research.

[117]  P. H. Schiller,et al.  State dependent activity in monkey visual cortex , 2004, Experimental Brain Research.

[118]  L. Chalupa,et al.  The visual neurosciences , 2004 .

[119]  S. Grossberg,et al.  Towards a theory of the laminar architecture of cerebral cortex: computational clues from the visual system. , 2003, Cerebral cortex.

[120]  J. Lund,et al.  Anatomical substrates for functional columns in macaque monkey primary visual cortex. , 2003, Cerebral cortex.

[121]  David C. Somers,et al.  Orientation Selectivity and Its Modulation by Local and Long-Range Connections in Visual Cortex , 2002 .

[122]  J. B. Levitt,et al.  Anatomical origins of the classical receptive field and modulatory surround field of single neurons in macaque visual cortical area V1. , 2002, Progress in brain research.

[123]  A. Peters,et al.  The cat primary visual cortex , 2002 .

[124]  J. Bullier,et al.  Response modulations by static texture surround in area V1 of the macaque monkey do not depend on feedback connections from V2. , 2001, Journal of neurophysiology.

[125]  P Girard,et al.  Feedback connections act on the early part of the responses in monkey visual cortex. , 2001, Journal of neurophysiology.

[126]  J. Bullier,et al.  The role of feedback connections in shaping the responses of visual cortical neurons. , 2001, Progress in brain research.

[127]  J. Kremers,et al.  Influence of contrast on the responses of marmoset lateral geniculate cells to drifting gratings. , 2001, Journal of neurophysiology.

[128]  R. Reid,et al.  The koniocellular pathway in primate vision. , 2000, Annual review of neuroscience.

[129]  J. Kaas,et al.  Extrastriate Cortex in Primates , 1997, Cerebral Cortex.

[130]  Jean Bullier,et al.  The Timing of Information Transfer in the Visual System , 1997 .

[131]  P A Salin,et al.  Corticocortical connections in the visual system: structure and function. , 1995, Physiological reviews.

[132]  Kathleen S. Rockland,et al.  Primary Visual Cortex in Primates , 1994, Cerebral Cortex.

[133]  I. Ohzawa,et al.  Length and width tuning of neurons in the cat's primary visual cortex. , 1994, Journal of neurophysiology.

[134]  Vivien A. Casagrande,et al.  The Afferent, Intrinsic, and Efferent Connections of Primary Visual Cortex in Primates , 1994 .

[135]  K. Rockland The Organization of Feedback Connections from Area V2 (18) to V1 (17) , 1994 .

[136]  D. J. Felleman,et al.  Distributed hierarchical processing in the primate cerebral cortex. , 1991, Cerebral cortex.

[137]  P. Goldman-Rakic,et al.  Preface: Cerebral Cortex Has Come of Age , 1991 .

[138]  J. Lund,et al.  Anatomical organization of macaque monkey striate visual cortex. , 1988, Annual review of neuroscience.

[139]  J. Allman,et al.  Stimulus specific responses from beyond the classical receptive field: neurophysiological mechanisms for local-global comparisons in visual neurons. , 1985, Annual review of neuroscience.

[140]  D. Hubel,et al.  Receptive fields, binocular interaction and functional architecture in the cat's visual cortex , 1962, The Journal of physiology.