Multi-label Classification with Error-correcting Codes

We formulate a framework for applying error-correcting codes (ECC) on multi-label classification problems. The framework treats some base learners as noisy channels and uses ECC to correct the prediction errors made by the learners. An immediate use of the framework is a novel ECC-based explanation of the popular random k-label-sets (RAKEL) algorithm using a simple repetition ECC. Using the framework, we empirically compare a broad spectrum of ECC designs for multi-label classification. The results not only demonstrate that RAKEL can be improved by applying some stronger ECC, but also show that the traditional Binary Relevance approach can be enhanced by learning more parity-checking labels. In addition, our study on different ECC helps understand the trade-off between the strength of ECC and the hardness of the base learning tasks.

[1]  Chih-Jen Lin,et al.  LIBSVM: A library for support vector machines , 2011, TIST.

[2]  Ian H. Witten,et al.  The WEKA data mining software: an update , 2009, SKDD.

[3]  Grigorios Tsoumakas,et al.  Random k -Labelsets: An Ensemble Method for Multilabel Classification , 2007, ECML.

[4]  Robert G. Gallager,et al.  Low-density parity-check codes , 1962, IRE Trans. Inf. Theory.

[5]  Chih-Jen Lin,et al.  LIBLINEAR: A Library for Large Linear Classification , 2008, J. Mach. Learn. Res..

[6]  Hsuan-Tien Lin,et al.  Multilabel Classification with Principal Label Space Transformation , 2012, Neural Computation.

[7]  Ling Li,et al.  Multiclass boosting with repartitioning , 2006, ICML.

[8]  Abbas Z. Kouzani,et al.  Multilabel Classification Using Error Correction Codes , 2010, ISICA.

[9]  Grigorios Tsoumakas,et al.  MULAN: A Java Library for Multi-Label Learning , 2011, J. Mach. Learn. Res..

[10]  A. Kouzani,et al.  Multilabel Classification by BCH Code and Random Forests , 2009 .

[11]  Robert E. Schapire,et al.  Using output codes to boost multiclass learning problems , 1997, ICML.

[12]  Sang Joon Kim,et al.  A Mathematical Theory of Communication , 2006 .

[13]  David J. C. MacKay,et al.  Information Theory, Inference, and Learning Algorithms , 2004, IEEE Transactions on Information Theory.

[14]  Dwijendra K. Ray-Chaudhuri,et al.  Binary mixture flow with free energy lattice Boltzmann methods , 2022, arXiv.org.

[15]  K. Dembczynski,et al.  On Label Dependence in Multi-Label Classification , 2010 .

[16]  Thomas G. Dietterich,et al.  Solving Multiclass Learning Problems via Error-Correcting Output Codes , 1994, J. Artif. Intell. Res..

[17]  Richard W. Hamming,et al.  Error detecting and error correcting codes , 1950 .

[18]  John Langford,et al.  Multi-Label Prediction via Compressed Sensing , 2009, NIPS.