Mean asymptotic behaviour of radix-rational sequences and dilation equations (Extended version)

The generating series of a radix-rational sequence is a rational formal power series from formal language theory viewed through a fixed radix numeration system. For each radix-rational sequence with complex values we provide an asymptotic expansion for the sequence of its Cesaro means. The precision of the asymptotic expansion depends on the joint spectral radius of the linear representation of the sequence; the coefficients are obtained through some dilation equations. The proofs are based on elementary linear algebra.

[1]  Philippe Dumas,et al.  On the Additive Differential Probability of Exclusive-Or , 2004, FSE.

[2]  John N. Tsitsiklis,et al.  The Lyapunov exponent and joint spectral radius of pairs of matrices are hard—when not impossible—to compute and to approximate , 1997, Math. Control. Signals Syst..

[3]  H. Shapiro,et al.  Extremal problems for polynomials and power series , 1951 .

[4]  J. Sakarovitch Eléments de théorie des automates , 2003 .

[5]  Y. Khakimdjanov,et al.  Nilpotent and solvable lie algebras , 2000 .

[6]  Philippe Dumas,et al.  Asymptotic Behaviour of a Non-commutative Rational Series with a Nonnegative Linear Representation , 2007, Discret. Math. Theor. Comput. Sci..

[7]  Helmut Prodinger,et al.  Mellin Transforms and Asymptotics: Digital Sums , 1994, Theor. Comput. Sci..

[8]  G. F. Clements,et al.  A sequence of (±1)-determinants with large values , 1965 .

[9]  Philippe Dumas Algebraic Aspects of B-regular Series , 1993, ICALP.

[10]  Alain Thomas,et al.  Systems of numeration and fractal functions relating to substitutions (French) , 1989 .

[11]  Robert Béjian,et al.  Discrépance de la suite de van der Corput , 1978 .

[12]  Michael Drmota,et al.  The distribution of the sum-of-digits function , 1998 .

[13]  Jeffrey Shallit,et al.  The Ubiquitous Prouhet-Thue-Morse Sequence , 1998, SETA.

[14]  C. Mauduit,et al.  Substitutions in dynamics, arithmetics, and combinatorics , 2002 .

[15]  J. Olivos,et al.  Speeding up the computations on an elliptic curve using addition-subtraction chains , 1990, RAIRO Theor. Informatics Appl..

[16]  Gilbert Strang,et al.  Inhomogeneous refinement equations , 1998 .

[17]  B. Mossé Reconnaissabilité des substitutions et complexité des suites automatiques , 1996 .

[18]  Vincent D. Blondel,et al.  Special issue on the joint spectral radius: Theory, methods and applications , 2008 .

[19]  Julien Cassaigne,et al.  Counting Overlap-Free Binary Words , 1993, STACS.

[20]  P. Rousseeuw,et al.  Wiley Series in Probability and Mathematical Statistics , 2005 .

[21]  M. Douglas McIlroy The Number of 1's in Binary Integers: Bounds and Extremal Properties , 1974, SIAM J. Comput..

[22]  J. Coquet,et al.  A summation formula related to the binary digits , 1983 .

[23]  Jean-Marie Dumont,et al.  Systemes de Numeration et Fonctions Fractales Relatifs aux Substitutions , 1989, Theor. Comput. Sci..

[24]  Brigitte Mosse,et al.  Properties of words and recognizability of fixed points of a substitution , 1992 .

[25]  L. Carlitz,et al.  Note on the Shapiro polynomials , 1970 .

[26]  Kenneth B. Stolarsky Power and Exponential Sums of Digital Sums Related to Binomial Coefficient Parity , 1977 .

[27]  P. Shiu,et al.  A Correlated Digital Sum Problem Associated with Sums of Three Squares , 1989 .

[28]  J. M. Dumont,et al.  Summation Formulae for Substitutions on a Finite Alphabet , 1990 .

[29]  Y. Nesterov,et al.  On the accuracy of the ellipsoid norm approximation of the joint spectral radius , 2005 .

[30]  Brigitte Mossé,et al.  Puissances de mots et reconnaissabilité des point fixes d'une substitution , 1992, Theor. Comput. Sci..

[31]  Jacques Sakarovitch,et al.  Elements of Automata Theory , 2009 .

[32]  I. Daubechies,et al.  Two-scale difference equations I: existence and global regularity of solutions , 1991 .

[33]  Christopher Heil,et al.  Matrix Refinement Equations: Existence and Uniqueness , 1996 .

[34]  J. R. Trollope An Explicit Expression for Binary Digital Sums , 1968 .

[35]  Nikita Sidorov,et al.  Number of representations related to a linear recurrent basis , 1999 .

[36]  Edward M. Reingold,et al.  Divide and Conquer Heuristics for Minimum Weighted Euclidean Matching , 1983, SIAM J. Comput..

[37]  Thierry BLUzAbstract SIMPLE REGULARITY CRITERIA FOR SUBDIVISION SCHEMES , 1997 .

[38]  Douglas P. Hardin,et al.  Multivariate nonhomogeneous refinement equations , 1999 .

[39]  Philippe Flajolet,et al.  A Note on Gray Code and Odd-Even Merge , 1980, SIAM J. Comput..

[40]  Jeffrey Shallit,et al.  The Ring of k-Regular Sequences , 1990, Theor. Comput. Sci..

[41]  Donald J. Newman,et al.  On the number of binary digits in a multiple of three , 1969 .

[42]  Ingrid Daubechies,et al.  Ten Lectures on Wavelets , 1992 .

[43]  D. Levin,et al.  Subdivision schemes in geometric modelling , 2002, Acta Numerica.

[44]  Walter Rudin,et al.  Some theorems on Fourier coefficients , 1959 .

[45]  Paul Erdős,et al.  On sums of Rudin-Shapiro coefficients II , 1983 .

[46]  Philippe Flajolet,et al.  Mellin transforms and asymptotics , 1994, Acta Informatica.

[47]  I. Daubechies,et al.  Two-scale difference equations II. local regularity, infinite products of matrices and fractals , 1992 .

[48]  Harald Niederreiter,et al.  Random number generation and Quasi-Monte Carlo methods , 1992, CBMS-NSF regional conference series in applied mathematics.