A review of metaheuristics in robotics

Metaheuristics have a substantial history in fine-tuning machine learning algorithms. They gained tremendous popularity in many application domains. Robotics on the other hand is a wide research discipline that embraces artificial intelligence in a complex individually-thinking robot and distributed robots. Recently, metaheuristics made a significant impact on the application areas of collaborating robotics. This new trend of collaborating robotics, offers the possibility of enhanced task performance, high reliability, low unit complexity and decreased cost over traditional robotic systems. Collaborating robots however are more than just networks of independent agents; they are potentially reconfigurable networks of communicating agents capable of coordinated sensing and interaction with the environment. On the conceptual level, these bots can be empowered by the logics of metaheuristic algorithms which share the same functionalities and capabilities. This paper reviews the recent advances of metaheuristic algorithms on robotics applications. A taxonomy is provided as a reference for robotics designers.

[1]  K. Wu Fuzzy interval control of mobile robots , 1996 .

[2]  Ralf Östermark,et al.  A Neuro-Genetic Algorithm for Heteroskedastic Time-Series Processes Empirical Tests on Global Asset Returns , 1999, Soft Comput..

[3]  Young-Sik Jeong,et al.  Human-Robot Interaction Learning Using Demonstration-Based Learning and Q-Learning in a Pervasive Sensing Environment , 2013, Int. J. Distributed Sens. Networks.

[4]  Jr. Charles E. Campbell,et al.  Collision-free path planning for a three-degree-of-freedom robot , 1991 .

[5]  Takumi Ichimura,et al.  Learning of neural networks with parallel hybrid GA using a royal road function , 1998, 1998 IEEE International Joint Conference on Neural Networks Proceedings. IEEE World Congress on Computational Intelligence (Cat. No.98CH36227).

[6]  Xin-She Yang,et al.  Nature-Inspired Metaheuristic Algorithms , 2008 .

[7]  Alejandra Cruz-Bernal Meta-Heuristic Optimization Techniques and Its Applications in Robotics , 2013 .

[8]  Miguel Toro,et al.  An Evolutionary and Local Search Algorithm for Planning Two Manipulators Motion , 1998, IEA/AIE.

[9]  ChangHwan Kim,et al.  PCA-based genetic operator for evolving movements of humanoid robot , 2008, 2008 IEEE Congress on Evolutionary Computation (IEEE World Congress on Computational Intelligence).

[10]  M. Narasimha Murty,et al.  Genetic K-means algorithm , 1999, IEEE Trans. Syst. Man Cybern. Part B.

[11]  Gaurav S. Sukhatme,et al.  Spreading Out: A Local Approach to Multi-robot Coverage , 2002, DARS.

[12]  A. Hussein,et al.  Metaheuristic optimization approach to mobile robot path planning , 2012, 2012 International Conference on Engineering and Technology (ICET).

[13]  Luca Maria Gambardella,et al.  Evolving Self-Organizing Behaviors for a Swarm-Bot , 2004, Auton. Robots.

[14]  Alexander P. Topchy,et al.  FAST LEARNING IN MULTILAYERED NEURAL NETWORKS BY MEANS OF HYBRID EVOLUTIONARY AND GRADIENT ALGORITHMS , 2007 .

[15]  Ganesh K. Venayagamoorthy,et al.  Optimal PSO for collective robotic search applications , 2004, Proceedings of the 2004 Congress on Evolutionary Computation (IEEE Cat. No.04TH8753).

[16]  Toshio Fukuda,et al.  Impact/contact control of a robotic manipulator , 1992 .

[17]  Gian Luca Foresti,et al.  A distributed probabilistic system for adaptive regulation of image processing parameters , 1996, IEEE Trans. Syst. Man Cybern. Part B.

[18]  Toshio Fukuda,et al.  A PSO-based Mobile Sensor Network for Odor Source Localization in Dynamic Environment: Theory, Simulation and Measurement , 2006, 2006 IEEE International Conference on Evolutionary Computation.

[19]  T. Schmickl,et al.  Trophallaxis among swarm-robots: A biologically inspired strategy for swarm robotics , 2006, The First IEEE/RAS-EMBS International Conference on Biomedical Robotics and Biomechatronics, 2006. BioRob 2006..

[20]  W. Jatmiko,et al.  A pso-based mobile robot for odor source localization in dynamic advection-diffusion with obstacles environment: theory, simulation and measurement , 2007, IEEE Computational Intelligence Magazine.

[21]  Adem Tuncer,et al.  Dynamic path planning of mobile robots with improved genetic algorithm , 2012, Comput. Electr. Eng..

[22]  Saroj Kumar Patel,et al.  Path planning strategy for autonomous mobile robot navigation using Petri-GA optimisation , 2011, Comput. Electr. Eng..

[23]  José Aguilar,et al.  Resolution of pattern recognition problems using a hybrid Genetic/Random Neural Network learning algorithm , 2005, Pattern Analysis and Applications.

[24]  Patrick Pérez,et al.  Hybrid Genetic Optimization and Statistical Model-Based Approach for the Classification of Shadow Shapes in Sonar Imagery , 2000, IEEE Trans. Pattern Anal. Mach. Intell..

[25]  J. Rafid Siddiqui,et al.  Visual Tracking using Particle Swarm Optimization , 2014, FOCS 2014.

[26]  Umi Kalthum Ngah,et al.  A calibration framework for swarming ASVs’ system design , 2011 .

[27]  B. Faverjon,et al.  Probabilistic Roadmaps for Path Planning in High-Dimensional Con(cid:12)guration Spaces , 1996 .

[28]  F. Zuren,et al.  An effective hybrid algorithm for mobile robot global path planning , 2002 .

[29]  Alcherio Martinoli,et al.  Distributed Adaptation in Multi-robot Search Using Particle Swarm Optimization , 2008, SAB.

[30]  Steven M. LaValle,et al.  Rapidly-Exploring Random Trees: Progress and Prospects , 2000 .

[31]  S. Fong,et al.  Metaheuristic Algorithms: Optimal Balance of Intensification and Diversification , 2014 .

[32]  Michael R. Fellows,et al.  Local Search: Is Brute-Force Avoidable? , 2009, IJCAI.

[33]  Rodney M. Goodman,et al.  Distributed odor source localization , 2002 .

[34]  Leandro dos Santos Coelho,et al.  Comparative study of SQP and metaheuristics for robotic manipulator design , 2008 .

[35]  Zbigniew Michalewicz,et al.  Adaptive evolutionary planner/navigator for mobile robots , 1997, IEEE Trans. Evol. Comput..

[36]  ChangHwan Kim,et al.  Imitation Learning of Robot Movement Using Evolutionary Algorithm , 2008 .

[37]  Alcherio Martinoli,et al.  Multi-robot learning with particle swarm optimization , 2006, AAMAS '06.

[38]  Xin Yao,et al.  Evolutionary Artificial Neural Networks , 1993, Int. J. Neural Syst..

[39]  Henrik Schiøler,et al.  Randomized Robot Trophallaxis , 2008 .

[40]  Christian Blum,et al.  Metaheuristics in combinatorial optimization: Overview and conceptual comparison , 2003, CSUR.

[41]  Jean-Claude Latombe,et al.  Robot Motion Planning: A Distributed Representation Approach , 1991, Int. J. Robotics Res..

[42]  Luca Maria Gambardella,et al.  SWARM-BOT: pattern formation in a swarm of self-assembling mobile robots , 2002, IEEE International Conference on Systems, Man and Cybernetics.

[43]  Mo Jamshidi,et al.  Soft computing for autonomous robotic systems , 2000 .

[44]  Marco Dorigo,et al.  Ant system: optimization by a colony of cooperating agents , 1996, IEEE Trans. Syst. Man Cybern. Part B.

[45]  Micael S. Couceiro,et al.  A novel multi-robot exploration approach based on Particle Swarm Optimization algorithms , 2011, 2011 IEEE International Symposium on Safety, Security, and Rescue Robotics.

[46]  O. Castillo,et al.  Bio-inspired optimization of fuzzy logic controllers for autonomous mobile robots , 2012, 2012 Annual Meeting of the North American Fuzzy Information Processing Society (NAFIPS).

[47]  Alcherio Martinoli,et al.  Inspiring and Modeling Multi-Robot Search with Particle Swarm Optimization , 2007, 2007 IEEE Swarm Intelligence Symposium.

[48]  Jianhua Zhang,et al.  Multi-objective Particle Swarm Optimization for Robot Path Planning in Environment with Danger Sources , 2011, J. Comput..

[49]  Pablo Moscato,et al.  A Gentle Introduction to Memetic Algorithms , 2003, Handbook of Metaheuristics.

[50]  Jean-Louis Deneubourg,et al.  Harvesting by a group of robots , 1992 .

[51]  Rodney M. Goodman,et al.  Comparing Distributed Exploration Strategies with Simulated and Autonomous Robots , 2000, DARS.

[52]  Oscar Castillo,et al.  An improved evolutionary method with fuzzy logic for combining Particle Swarm Optimization and Genetic Algorithms , 2011, Appl. Soft Comput..

[53]  James Hereford,et al.  Bio-Inspired Search Strategies for Robot Swarms , 2010 .

[54]  Ali M. S. Zalzala,et al.  Hybridisation of neural networks and genetic algorithms for time-optimal control , 1999, Proceedings of the 1999 Congress on Evolutionary Computation-CEC99 (Cat. No. 99TH8406).

[55]  Sahar Trigui,et al.  smartPATH: A hybrid ACO-GA algorithm for robot path planning , 2012, 2012 IEEE Congress on Evolutionary Computation.

[56]  Ying Tan,et al.  Group explosion strategy for searching multiple targets using swarm robotic , 2013, 2013 IEEE Congress on Evolutionary Computation.

[57]  Debasish Ghose,et al.  Detection of multiple source locations using a glowworm metaphor with applications to collective robotics , 2005, Proceedings 2005 IEEE Swarm Intelligence Symposium, 2005. SIS 2005..

[58]  Thomas Schmickl,et al.  Trophallaxis within a robotic swarm: bio-inspired communication among robots in a swarm , 2008, Auton. Robots.

[59]  Yan Meng,et al.  A Hybrid ACO/PSO Control Algorithm for Distributed Swarm Robots , 2007, 2007 IEEE Swarm Intelligence Symposium.

[60]  Francesco Mondada,et al.  SWARM-BOT: from concept to implementation , 2003, Proceedings 2003 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS 2003) (Cat. No.03CH37453).

[61]  Sim Heng Ong,et al.  A bio-inspired distributed approach for searching underwater acoustic source using a team of AUVs , 2013, 2013 MTS/IEEE OCEANS - Bergen.

[62]  Veysel Gazi,et al.  Particle swarm optimization with dynamic neighborhood topology: Three neighborhood strategies and preliminary results , 2008, 2008 IEEE Swarm Intelligence Symposium.