Who Solved the Hirsch Conjecture ?
暂无分享,去创建一个
[1] George B. Dantzig,et al. Linear programming and extensions , 1965 .
[2] V. Klee,et al. Thed-step conjecture for polyhedra of dimensiond<6 , 1967 .
[3] V. Klee,et al. HOW GOOD IS THE SIMPLEX ALGORITHM , 1970 .
[4] David W. Barnette. An upper bound for the diameter of a polytope , 1974, Discret. Math..
[5] Amos Altshuler,et al. The classification of simplicial 3-spheres with nine vertices into polytopes and nonpolytopes , 1980, Discret. Math..
[6] K. Borgwardt. The Simplex Method: A Probabilistic Analysis , 1986 .
[7] Victor Klee,et al. The d-Step Conjecture and Its Relatives , 1987, Math. Oper. Res..
[8] G. Kalai,et al. A quasi-polynomial bound for the diameter of graphs of polyhedra , 1992, math/9204233.
[9] G. Ziegler. Lectures on Polytopes , 1994 .
[10] M. Padberg. Linear Optimization and Extensions , 1995 .
[11] Günter M. Ziegler. Typical and Extremal Linear Programs , 2004, The Sharpest Cut.
[12] Francisco Santos,et al. A counterexample to the Hirsch conjecture , 2010, ArXiv.
[13] Edward D. Kim,et al. An Update on the Hirsch Conjecture , 2009, 0907.1186.
[14] F. Santos. Über ein Gegenbeispiel zur Hirsch-Vermutung , 2010 .
[15] Uri Zwick,et al. Subexponential lower bounds for randomized pivoting rules for the simplex algorithm , 2011, STOC '11.
[16] Oliver Friedmann,et al. A Subexponential Lower Bound for Zadeh's Pivoting Rule for Solving Linear Programs and Games , 2011, IPCO.
[17] Tamon Stephen,et al. Embedding a Pair of Graphs in a Surface, and the Width of 4-dimensional Prismatoids , 2012, Discret. Comput. Geom..