A Cognitive Radio Tracking System for Indoor Environments

A Cognitive Radio Tracking System for Indoor Environments Azadeh Kushki Doctor of Philosophy Graduate Department of Electrical & Computer Engineering University of Toronto 2008 Advances in wireless communication have enabled mobility of personal computing devices equipped with sensing and computing capabilities. This has motivated the development of location-based services (LBS) that are implemented on top of existing communication infrastructures to cater to changing user contexts. To enable and support the delivery of LBS, accurate, reliable, and realtime user location information is needed. This thesis introduces a cognitive dynamic system for tracking the position of mobile users using received signal strength (RSS) in Wireless Local Area Networks (WLAN). The main challenge in WLAN positioning is the unpredictable nature of the RSS-position relationship. Existing system rely on a set of training samples collected at a set of anchor points with known positions in the environment to characterize this relationship. The first contribution of this thesis is the use of nonparametric kernel density estimation for minimum mean square error positioning using the RSS training data. This formulation enables the rigorous study of state-space filtering in the context of WLAN positioning. The outcome is the Nonparametric Information (NI) filter, a novel recursive position estimator that incorporates both RSS measurements and a dynamic model of pedestrian motion during estimation. In contrast to traditional Kalman filtering approaches, the NI filter does not

[1]  Konstantinos N. Plataniotis,et al.  Kernel-Based Positioning in Wireless Local Area Networks , 2007, IEEE Transactions on Mobile Computing.

[2]  Konstantinos N. Plataniotis,et al.  Location Tracking in Wireless Local Area Networks with Adaptive Radio MAPS , 2006, 2006 IEEE International Conference on Acoustics Speech and Signal Processing Proceedings.

[3]  Mikkel Baun Kjærgaard,et al.  A Taxonomy for Radio Location Fingerprinting , 2007, LoCA.

[4]  T. Moon,et al.  Mathematical Methods and Algorithms for Signal Processing , 1999 .

[5]  Kuei-Chung Chang,et al.  Neural fuzzy based indoor localization by Kalman filtering with propagation channel modeling , 2007, 2007 IEEE International Conference on Systems, Man and Cybernetics.

[6]  K. Kaemarungsi,et al.  Distribution of WLAN received signal strength indication for indoor location determination , 2006, 2006 1st International Symposium on Wireless Pervasive Computing.

[7]  Navin Kumar Sharma A weighted center of mass based trilateration approach for locating wireless devices in indoor environment , 2006, MobiWac '06.

[8]  Simon Haykin,et al.  Cognitive Dynamic Systems , 2007, 2007 4th International Conference on Electrical and Electronics Engineering.

[9]  Konstantinos N. Plataniotis,et al.  Color image processing using adaptive multichannel filters , 1997, IEEE Trans. Image Process..

[10]  Simon Haykin,et al.  Cognitive radio: brain-empowered wireless communications , 2005, IEEE Journal on Selected Areas in Communications.

[11]  C. D. Kemp,et al.  Density Estimation for Statistics and Data Analysis , 1987 .

[12]  Moustafa Youssef,et al.  WLAN location determination via clustering and probability distributions , 2003, Proceedings of the First IEEE International Conference on Pervasive Computing and Communications, 2003. (PerCom 2003)..

[13]  A. Harter,et al.  A distributed location system for the active office , 1994, IEEE Network.

[14]  Kostas E. Bekris,et al.  On the feasibility of using wireless ethernet for indoor localization , 2004, IEEE Transactions on Robotics and Automation.

[15]  Hao Wang,et al.  A wireless LAN-based indoor positioning technology , 2004, IBM J. Res. Dev..

[16]  Henry Tirri,et al.  A Statistical Modeling Approach to Location Estimation , 2002, IEEE Trans. Mob. Comput..

[17]  Konstantinos N. Plataniotis,et al.  Dynamic model-based filtering for mobile terminal location estimation , 2003, IEEE Trans. Veh. Technol..

[18]  Marcela D. Rodríguez,et al.  Location-aware access to hospital information and services , 2004, IEEE Transactions on Information Technology in Biomedicine.

[19]  Andrea F. Cattoni,et al.  A particle filter based fusion framework for video-radio tracking in smart spaces , 2007, 2007 IEEE Conference on Advanced Video and Signal Based Surveillance.

[20]  Moustafa Youssef,et al.  Handling samples correlation in the Horus system , 2004, IEEE INFOCOM 2004.

[21]  Y. Ho,et al.  A Bayesian approach to problems in stochastic estimation and control , 1964 .

[22]  Thia Kirubarajan,et al.  Estimation with Applications to Tracking and Navigation: Theory, Algorithms and Software , 2001 .

[23]  Konstantinos N. Plataniotis,et al.  Data fusion of power and time measurements for mobile terminal location , 2005, IEEE Transactions on Mobile Computing.

[24]  P. Djurić,et al.  Particle filtering , 2003, IEEE Signal Process. Mag..

[25]  J. K. Ghosh,et al.  Statistical information and likelihood : a collection of critical essays , 1989 .

[26]  Yiqiang Chen,et al.  Accurate and Low-cost Location Estimation Using Kernels , 2005, IJCAI.

[27]  Gaetano Borriello,et al.  Location Systems for Ubiquitous Computing , 2001, Computer.

[28]  Kaveh Pahlavan,et al.  Super-resolution TOA estimation with diversity for indoor geolocation , 2004, IEEE Transactions on Wireless Communications.

[29]  David Tse,et al.  Fundamentals of Wireless Communication , 2005 .

[30]  Prashant Krishnamurthy,et al.  Properties of indoor received signal strength for WLAN location fingerprinting , 2004, The First Annual International Conference on Mobile and Ubiquitous Systems: Networking and Services, 2004. MOBIQUITOUS 2004..

[31]  Yiqiang Chen,et al.  Multidimensional Vector Regression for Accurate and Low-Cost Location Estimation in Pervasive Computing , 2006, IEEE Transactions on Knowledge and Data Engineering.

[32]  Neil J. Gordon,et al.  A tutorial on particle filters for online nonlinear/non-Gaussian Bayesian tracking , 2002, IEEE Trans. Signal Process..

[33]  Mauro Brunato,et al.  Transparent Location Fingerprinting for Wireless Services , 2002 .

[34]  Konstantinos N. Plataniotis,et al.  Sensor selection for mitigation of RSS-based attacks in wireless local area network positioning , 2008, 2008 IEEE International Conference on Acoustics, Speech and Signal Processing.

[35]  Hari Balakrishnan,et al.  6th ACM/IEEE International Conference on on Mobile Computing and Networking (ACM MOBICOM ’00) The Cricket Location-Support System , 2022 .

[36]  Andrea F. Cattoni,et al.  Video-radio fusion approach for target tracking in smart spaces , 2007, 2007 10th International Conference on Information Fusion.

[37]  S. Haykin,et al.  Cognitive radar: a way of the future , 2006, IEEE Signal Processing Magazine.

[38]  François Marx,et al.  Map-aided indoor mobile positioning system using particle filter , 2005, IEEE Wireless Communications and Networking Conference, 2005.

[39]  John Krumm,et al.  Location-aware computing comes of age , 2004, Computer.

[40]  Andy Hopper,et al.  Broadband ultrasonic location systems for improved indoor positioning , 2006, IEEE Transactions on Mobile Computing.

[41]  F Polytechnique,et al.  A Discrete Choice Modeling Framework for Pedestrian Walking Behavior with Application to Human Tracking in Video Sequences , 2005 .

[42]  Nello Cristianini,et al.  Kernel Methods for Pattern Analysis , 2004 .

[43]  C. Regazzoni,et al.  A STATISTICAL MODELLING BASED LOCATION DETERMINATION METHOD USING FUSION TECHNIQUE IN WLAN , 2005 .

[44]  K.J.R. Liu,et al.  Signal processing techniques in network-aided positioning: a survey of state-of-the-art positioning designs , 2005, IEEE Signal Processing Magazine.

[45]  Abbas Jamalipour,et al.  Wireless communications , 2005, GLOBECOM '05. IEEE Global Telecommunications Conference, 2005..

[46]  B. R. Badrinath,et al.  VOR base stations for indoor 802.11 positioning , 2004, MobiCom '04.

[47]  Moustafa Youssef,et al.  Continuous space estimation for WLAN location determination systems , 2004, Proceedings. 13th International Conference on Computer Communications and Networks (IEEE Cat. No.04EX969).

[48]  Fredrik Gustafsson,et al.  Particle filters for positioning, navigation, and tracking , 2002, IEEE Trans. Signal Process..

[49]  Moustafa Youssef,et al.  The Horus WLAN location determination system , 2005, MobiSys '05.

[50]  Paramvir Bahl,et al.  RADAR: an in-building RF-based user location and tracking system , 2000, Proceedings IEEE INFOCOM 2000. Conference on Computer Communications. Nineteenth Annual Joint Conference of the IEEE Computer and Communications Societies (Cat. No.00CH37064).

[51]  Chin-Liang Wang,et al.  An Adaptive Location Estimator Based on Kalman Filtering for Dynamic Indoor Environments , 2006, IEEE Vehicular Technology Conference.

[52]  Colin L. Mallows,et al.  A system for LEASE: location estimation assisted by stationary emitters for indoor RF wireless networks , 2004, IEEE INFOCOM 2004.

[53]  Ahmed Karmouch,et al.  Policy-Driven Personalized Multimedia Services for Mobile Users , 2003, IEEE Trans. Mob. Comput..

[54]  Kai-Yuan Cai,et al.  Multisensor Decision And Estimation Fusion , 2003, The International Series on Asian Studies in Computer and Information Science.

[55]  Yiqiang Chen,et al.  Power-efficient access-point selection for indoor location estimation , 2006, IEEE Transactions on Knowledge and Data Engineering.

[56]  Ashok K. Agrawala,et al.  Horus: a wlan-based indoor location determination system , 2004 .

[57]  Qiang Yang,et al.  Learning Adaptive Temporal Radio Maps for Signal-Strength-Based Location Estimation , 2008, IEEE Transactions on Mobile Computing.

[58]  J. Simonoff Multivariate Density Estimation , 1996 .

[59]  Keith Cheverst,et al.  Using and Determining Location in a Context-Sensitive Tour Guide , 2001, Computer.

[60]  Prashant Krishnamurthy,et al.  Modeling of indoor positioning systems based on location fingerprinting , 2004, IEEE INFOCOM 2004.

[61]  Branko Ristic,et al.  Beyond the Kalman Filter: Particle Filters for Tracking Applications , 2004 .

[62]  Richard R. Muntz,et al.  Challenges in Location-Aware Computing , 2003, IEEE Pervasive Comput..

[63]  Hugh Durrant-Whyte,et al.  Data Fusion and Sensor Management: A Decentralized Information-Theoretic Approach , 1995 .

[64]  David G. Stork,et al.  Pattern Classification (2nd ed.) , 1999 .

[65]  Henry Tirri,et al.  A Probabilistic Approach to WLAN User Location Estimation , 2002, Int. J. Wirel. Inf. Networks.

[66]  H. V. Trees Detection, Estimation, And Modulation Theory , 2001 .

[67]  Kostas E. Bekris,et al.  Robotics-Based Location Sensing Using Wireless Ethernet , 2002, MobiCom '02.

[68]  Ismail Guvenc,et al.  Enhancements to RSS Based Indoor Tracking Systems Using Kalman Filters , 2003 .

[69]  Mauro Brunato,et al.  Statistical learning theory for location fingerprinting in wireless LANs , 2005, Comput. Networks.

[70]  Frank Stajano,et al.  Location Privacy in Pervasive Computing , 2003, IEEE Pervasive Comput..

[71]  S. Haykin,et al.  Adaptive Filter Theory , 1986 .

[72]  Paul Coulton,et al.  Providing location based information/advertising for existing mobile phone users , 2006, Personal and Ubiquitous Computing.

[73]  Camillo Gentile,et al.  Robust location using system dynamics and motion constraints , 2004, 2004 IEEE International Conference on Communications (IEEE Cat. No.04CH37577).