Novel Artificial Control of Nonlinear Uncertain System: Design a Novel Modified PSO SISO Lyapunov Based Fuzzy Sliding Mode Algorithm

This research is focused on novel particle swarm optimization (PSO) SISO Lyapunov based fuzzy estimator sliding mode algorithms derived in the Lyapunov sense. The stability of the closed-loop system is proved mathematically based on the Lyapunov method. PSO SISO fuzzy compensate sliding mode method design a SISO fuzzy system to compensate for the dynamic model uncertainties of the nonlinear dynamic system and chattering also solved by nonlinear fuzzy saturation like method. Adjust the sliding function is played important role to reduce the chattering phenomenon and also design acceptable estimator applied to nonlinear classical controller so PSO method is used to off-line tuning. Classical sliding mode control is robust to control model uncertainties and external disturbances. A sliding mode method with a switching control low guarantees the stability of the certain and/or uncertain system, but the addition of the switching control low introduces chattering into the system. One way to reduce or eliminate chattering is to insert a nonlinear (fuzzy) boundary like layer method inside of a boundary layer around the sliding surface. Classical sliding mode control method has difficulty in handling unstructured model uncertainties. One can overcome this problem by applied fuzzy inference system into sliding mode algorithm to design and estimate model-free nonlinear dynamic equivalent part. To approximate a timevarying nonlinear dynamic system, a fuzzy system requires a large amount of fuzzy rule base. This large number of fuzzy rules will cause a high computation load. The addition of PSO method to a fuzzy sliding mode controller to tune the parameters of the fuzzy rules in use will ensure a moderate computational load. The PSO method in this algorithm is designed based on the PSO stability theorem. Asymptotic stability of the closed loop system is also proved in the sense of Lyapunov.

[1]  Wen-June Wang,et al.  Self-tuning sliding mode controller design for a class of nonlinear control systems , 2008, 2008 IEEE International Conference on Systems, Man and Cybernetics.

[2]  Nabil Derbel,et al.  A decoupled fuzzy indirect adaptive sliding mode controller with application to robot manipulator , 2006, Int. J. Model. Identif. Control..

[3]  H. Temeltas A fuzzy adaptation technique for sliding mode controllers , 1998, IEEE International Symposium on Industrial Electronics. Proceedings. ISIE'98 (Cat. No.98TH8357).

[4]  Y. T. Kim Independent Joint Adaptive Fuzzy Control of Robot Manipulator , 2005, Intell. Autom. Soft Comput..

[5]  Brian W. Surgenor,et al.  Experimental evaluation of the robustness of discrete sliding mode control versus linear quadratic control , 1997, IEEE Trans. Control. Syst. Technol..

[6]  Chuen-Chien Lee FUZZY LOGIC CONTROL SYSTEMS: FUZZY LOGIC CONTROLLER - PART I , 1990 .

[7]  C. Causer The Art of War , 2011, IEEE Potentials.

[8]  Farzin Piltan,et al.  Design artificial robust control of second order system based on adaptive fuzzy gain scheduling , 2011 .

[9]  Abdul Rahman Ramli,et al.  A model-free robust sliding surface slope adjustment in sliding mode control for robot manipulator , 2011 .

[10]  O. Kaynak,et al.  Guest editorial special section on computationally intelligent methodologies and sliding-mode control , 2001 .

[11]  Keding Zhao,et al.  An integral variable structure controller with fuzzy tuning design for electro-hydraulic driving Stewart platform , 2006, 2006 1st International Symposium on Systems and Control in Aerospace and Astronautics.

[12]  Okyay Kaynak,et al.  Neuro sliding mode control of robotic manipulators , 2000 .

[13]  Heinz Unbehauen,et al.  An adaptive fuzzy sliding-mode controller , 2001, IEEE Trans. Ind. Electron..

[14]  Chih-Lyang Hwang,et al.  A fuzzy-model-based variable structure control for robot arms: theory and experiments , 2004, 2004 IEEE International Conference on Systems, Man and Cybernetics (IEEE Cat. No.04CH37583).

[15]  Mo Jamshidi,et al.  Soft computing for autonomous robotic systems , 2000 .

[16]  James Kennedy,et al.  The particle swarm: social adaptation of knowledge , 1997, Proceedings of 1997 IEEE International Conference on Evolutionary Computation (ICEC '97).

[17]  Peng-Yung Woo,et al.  Fuzzy logic control of robot manipulator , 1993, Proceedings of IEEE International Conference on Control and Applications.

[18]  Chih-Min Lin,et al.  Adaptive fuzzy sliding-mode control for induction servomotor systems , 2004, IEEE Transactions on Energy Conversion.

[19]  Byung Kook Yoo,et al.  Adaptive control of robot manipulator using fuzzy compensator , 2000, IEEE Trans. Fuzzy Syst..

[20]  Ya-Chen Hsu,et al.  Fuzzy variable structure control for MIMO systems , 1998, 1998 IEEE International Conference on Fuzzy Systems Proceedings. IEEE World Congress on Computational Intelligence (Cat. No.98CH36228).

[21]  Derong Liu,et al.  Multi-Agent Based Adaptive Consensus Control for Multiple Manipulators with Kinematic Uncertainties , 2008, 2008 IEEE International Symposium on Intelligent Control.

[22]  Lotfi A. Zadeh,et al.  Toward a theory of fuzzy information granulation and its centrality in human reasoning and fuzzy logic , 1997, Fuzzy Sets Syst..

[23]  김병국,et al.  A Study on the Design of Self-tuning Sliding Mode Fuzzy Controller , 1994 .

[24]  V. Utkin Variable structure systems with sliding modes , 1977 .

[25]  Vadim I. Utkin,et al.  A control engineer's guide to sliding mode control , 1999, IEEE Trans. Control. Syst. Technol..

[26]  Peng-Yung Woo,et al.  An adaptive fuzzy sliding mode controller for robotic manipulators , 2003, IEEE Trans. Syst. Man Cybern. Part A.

[27]  Jean-Jacques E. Slotine,et al.  Sliding controller design for non-linear systems , 1984 .

[28]  Farzin Piltan,et al.  Design of FPGA-based Sliding Mode Controller for Robot Manipulator. , 2011 .

[29]  N. Pariz,et al.  Position control of induction and DC servomotors: a novel adaptive fuzzy PI sliding mode control , 2006, 2006 IEEE Power Engineering Society General Meeting.

[30]  Zdenko Kovacic,et al.  Fuzzy Controller Design: Theory and Applications , 2005 .

[31]  Oussama Khatib,et al.  Springer Handbook of Robotics , 2007, Springer Handbooks.

[32]  Li-Chen Fu,et al.  Nonlinear control of robot manipulators using adaptive fuzzy sliding mode control , 1995, Proceedings 1995 IEEE/RSJ International Conference on Intelligent Robots and Systems. Human Robot Interaction and Cooperative Robots.

[33]  R. Palm,et al.  Sliding mode fuzzy control , 1992, [1992 Proceedings] IEEE International Conference on Fuzzy Systems.

[34]  Rong-Jong Wai,et al.  Intelligent optimal control of single-link flexible robot arm , 2004, IEEE Transactions on Industrial Electronics.

[35]  Thomas R. Kurfess,et al.  Robotics And Automation Handbook , 2019 .

[36]  Farzin Piltan,et al.  Artificial Control of Nonlinear Second Order Systems Based on AFGSMC , 2011 .

[37]  Hyun-Sik Ahn,et al.  Sliding mode-like fuzzy logic control with self-tuning the dead zone parameters , 2001, IEEE Trans. Fuzzy Syst..

[38]  Chuen-Chien Lee,et al.  Fuzzy logic in control systems: fuzzy logic controller. II , 1990, IEEE Trans. Syst. Man Cybern..

[39]  Constantine H. Houpis,et al.  Linear Control System Analysis and Design with MATLAB , 2013 .

[40]  Rong-Jong Wai,et al.  Implementation of artificial intelligent control in single-link flexible robot arm , 2003, Proceedings 2003 IEEE International Symposium on Computational Intelligence in Robotics and Automation. Computational Intelligence in Robotics and Automation for the New Millennium (Cat. No.03EX694).

[41]  Abdul Rahman Ramli,et al.  Design adaptive fuzzy robust controllers for robot manipulator , 2011 .

[42]  Masayoshi Tomizuka,et al.  Chattering reduction and error convergence in the sliding-mode control of a class of nonlinear systems , 1996, IEEE Trans. Autom. Control..

[43]  Ahmad B. Rad,et al.  Indirect adaptive fuzzy sliding mode control: Part I: fuzzy switching , 2001, Fuzzy Sets Syst..

[44]  Leopoldo García Franquelo,et al.  Speed control of induction motors using a novel fuzzy sliding-mode structure , 2002, IEEE Trans. Fuzzy Syst..

[45]  Y.F. Wang,et al.  Robust adaptive fuzzy observer design in robot arms , 2004, 2004 5th Asian Control Conference (IEEE Cat. No.04EX904).

[46]  John Arquilla,et al.  Swarming and the Future of Conflict , 2000 .

[47]  J. Zhou,et al.  Fuzzy control of robots , 1992, [1992 Proceedings] IEEE International Conference on Fuzzy Systems.

[48]  Weiping Li,et al.  Applied Nonlinear Control , 1991 .

[49]  Hakan Elmali,et al.  Implementation of sliding mode control with perturbation estimation (SMCPE) , 1996, IEEE Trans. Control. Syst. Technol..

[50]  J. J. Slotine,et al.  Tracking control of non-linear systems using sliding surfaces with application to robot manipulators , 1983, 1983 American Control Conference.

[51]  Andrew A. Goldenberg,et al.  Development of a systematic methodology of fuzzy logic modeling , 1998, IEEE Trans. Fuzzy Syst..

[52]  Sudeept Mohan,et al.  Comparative Study of Some Adaptive Fuzzy Algorithms for Manipulator Control , 2007 .

[53]  Chiang-Cheng Chiang,et al.  Observer-Based Adaptive Fuzzy Sliding Mode Control of Uncertain Multiple-Input Multiple-Output Nonlinear Systems , 2007, 2007 IEEE International Fuzzy Systems Conference.

[54]  Farzin Piltan,et al.  Design Artificial Nonlinear Robust Controller Based on CTLC and FSMC With Tunable Gain. , 2011 .

[55]  Leonid M. Fridman,et al.  Analysis of Chattering in Systems With Second-Order Sliding Modes , 2007, IEEE Transactions on Automatic Control.

[56]  Chuen-Chien Lee,et al.  Fuzzy logic in control systems: fuzzy logic controller. I , 1990, IEEE Trans. Syst. Man Cybern..

[57]  N. Olgac,et al.  A comparative study on simulations vs. experiments of SMCPE , 1994, Proceedings of 1994 American Control Conference - ACC '94.

[58]  Qingsong Xu,et al.  Adaptive Sliding Mode Control With Perturbation Estimation and PID Sliding Surface for Motion Tracking of a Piezo-Driven Micromanipulator , 2010, IEEE Transactions on Control Systems Technology.

[59]  Chin-Gook Lhee,et al.  Sliding-like fuzzy logic control with self-tuning the dead zone parameters , 1999, FUZZ-IEEE'99. 1999 IEEE International Fuzzy Systems. Conference Proceedings (Cat. No.99CH36315).

[60]  Hongye Su,et al.  Adaptive sliding mode-like fuzzy logic control for high order nonlinear systems , 2003, Proceedings of the 2003 IEEE International Symposium on Intelligent Control.

[61]  M. Rouhani,et al.  A novel neuro-based model reference adaptive control for a two link robot arm , 2002, Proceedings of the 2002 International Joint Conference on Neural Networks. IJCNN'02 (Cat. No.02CH37290).

[62]  Farzin Piltan,et al.  Design Mathematical Tunable Gain PID-Like Sliding Mode Fuzzy Controller with Minimum Rule base. , 2011 .

[63]  R. Decarlo,et al.  Variable structure control of nonlinear multivariable systems: a tutorial , 1988, Proc. IEEE.

[64]  Wen-Shyong Yu,et al.  Adaptive fuzzy sliding mode control for linear time-varying uncertain systems , 2008, 2008 IEEE International Conference on Fuzzy Systems (IEEE World Congress on Computational Intelligence).

[65]  Fumio Harashima,et al.  Practical robust control of robot arm using variable structure system , 1986, Proceedings. 1986 IEEE International Conference on Robotics and Automation.