Control of redundant robots using learned models: An operational space control approach

We present an adaptive control approach combining forward kinematics model learning methods with the operational space control approach. This combination endows the robot with the ability to realize hierarchically organised learned tasks in parallel, using tasks null space projectors built upon the learned models. We illustrate the proposed method on a simulated 3 degrees of freedom planar robot. This system is used as a benchmark to compare our method to an alternative approach based on learning an extended Jacobian. We show the better versatility of the retained approach with respect to the latter.

[1]  P. Bidaud,et al.  Stability Measure of Postural Dynamic Equilibrium Based on Residual Radius , 2008 .

[2]  Brian Scassellati,et al.  Reaching through learned forward model , 2004, 4th IEEE/RAS International Conference on Humanoid Robots, 2004..

[3]  Keith L. Doty,et al.  A Theory of Generalized Inverses Applied to Robotics , 1993, Int. J. Robotics Res..

[4]  Stefan Schaal,et al.  LWPR: A Scalable Method for Incremental Online Learning in High Dimensions , 2005 .

[5]  Giulio Sandini,et al.  The iCub humanoid robot: an open platform for research in embodied cognition , 2008, PerMIS.

[6]  Aude Billard,et al.  On Learning, Representing, and Generalizing a Task in a Humanoid Robot , 2007, IEEE Transactions on Systems, Man, and Cybernetics, Part B (Cybernetics).

[7]  Stefano Chiaverini,et al.  Singularity-robust task-priority redundancy resolution for real-time kinematic control of robot manipulators , 1997, IEEE Trans. Robotics Autom..

[8]  Stefan Schaal,et al.  Learning inverse kinematics , 2001, Proceedings 2001 IEEE/RSJ International Conference on Intelligent Robots and Systems. Expanding the Societal Role of Robotics in the the Next Millennium (Cat. No.01CH37180).

[9]  Adi Ben-Israel,et al.  Generalized inverses: theory and applications , 1974 .

[10]  G. Metta,et al.  Learning precise 3D reaching in a humanoid robot , 2007, 2007 IEEE 6th International Conference on Development and Learning.

[11]  Rajesh P. N. Rao,et al.  Robotic imitation from human motion capture using Gaussian processes , 2005, 5th IEEE-RAS International Conference on Humanoid Robots, 2005..

[12]  John Baillieul,et al.  Kinematic programming alternatives for redundant manipulators , 1985, Proceedings. 1985 IEEE International Conference on Robotics and Automation.

[13]  Oussama Khatib,et al.  Synthesis of Whole-Body Behaviors through Hierarchical Control of Behavioral Primitives , 2005, Int. J. Humanoid Robotics.

[14]  Stefan Schaal,et al.  Incremental Online Learning in High Dimensions , 2005, Neural Computation.

[15]  Nicolas Mansard,et al.  Task Sequencing for High-Level Sensor-Based Control , 2007, IEEE Transactions on Robotics.

[16]  Oussama Khatib,et al.  A unified approach for motion and force control of robot manipulators: The operational space formulation , 1987, IEEE J. Robotics Autom..

[17]  Stefan Schaal,et al.  A Library for Locally Weighted Projection Regression , 2008, J. Mach. Learn. Res..

[18]  Stefan Schaal,et al.  Learning to Control in Operational Space , 2008, Int. J. Robotics Res..

[19]  Sethu Vijayakumar,et al.  Learned system dynamics for adaptive optimal feedback control , 2005 .

[20]  Gene H. Golub,et al.  Matrix computations (3rd ed.) , 1996 .

[21]  A. A. Maciejewski,et al.  Obstacle Avoidance , 2005 .

[22]  A. Liegeois,et al.  Automatic supervisory control of the configuration and behavior of multi-body mechanisms , 1977 .

[23]  Michael Felsberg,et al.  Visual Servoing for Floppy Robots using LWPR , 2007 .

[24]  Robert H. Halstead,et al.  Matrix Computations , 2011, Encyclopedia of Parallel Computing.

[25]  Bernhard Schölkopf,et al.  Learning Inverse Dynamics: a Comparison , 2008, ESANN.

[26]  Yoshihiko Nakamura,et al.  Advanced robotics - redundancy and optimization , 1990 .