Increasing the accuracy of electromagnetic inverses using functional area source correlation constraints

Estimating cortical current distributions from electroencephalographic (EEG) or magnetoencephalographic data is a difficult inverse problem whose solution can be improved by the addition of priors on the associated neural responses. In the context of visual activation studies, we propose a new approach that uses a functional area constrained estimator (FACE) to increase the accuracy of the reconstructions. It derives the source correlation matrix from a segmentation of the cortex into areas defined by retinotopic maps of the visual field or by functional localizers obtained independently by fMRI. These areas are computed once for each individual subject and the associated estimators can therefore be reused for any new study on the same participant. The resulting FACE reconstructions emphasize the activity of sources within these areas or enforce their intercorrelations. We used realistic Monte‐Carlo simulations to demonstrate that this approach improved our estimates of a diverse set of source configurations. Reconstructions obtained from a real EEG dataset demonstrate that our priors improve the localization of the cortical areas involved in horizontal disparity processing. Hum Brain Mapp, 2012. © 2011 Wiley Periodicals, Inc.

[1]  A. Parker Binocular depth perception and the cerebral cortex , 2007, Nature Reviews Neuroscience.

[2]  Manbir Singh,et al.  An Evaluation of Methods for Neuromagnetic Image Reconstruction , 1987, IEEE Transactions on Biomedical Engineering.

[3]  Karl J. Friston,et al.  Multiple sparse priors for the M/EEG inverse problem , 2008, NeuroImage.

[4]  N. Kanwisher,et al.  Cortical Regions Involved in Perceiving Object Shape , 2000, The Journal of Neuroscience.

[5]  C. Barillot,et al.  Registration of MEG/EEG data with 3D MRI: Methodology and precision issues , 1996, Brain Topography.

[6]  R. Tootell,et al.  Where is 'dorsal V4' in human visual cortex? Retinotopic, topographic and functional evidence. , 2001, Cerebral cortex.

[7]  L. Kaufman,et al.  Magnetic source images determined by a lead-field analysis: the unique minimum-norm least-squares estimation , 1992, IEEE Transactions on Biomedical Engineering.

[8]  C. Wheatstone XVIII. Contributions to the physiology of vision. —Part the first. On some remarkable, and hitherto unobserved, phenomena of binocular vision , 1962, Philosophical Transactions of the Royal Society of London.

[9]  Seppo P. Ahlfors,et al.  Geometrical interpretation of fMRI-guided MEG/EEG inverse estimates , 2004, NeuroImage.

[10]  Ichiro Fujita,et al.  Representation of stereoscopic depth based on relative disparity in macaque area V4. , 2007, Journal of neurophysiology.

[11]  Jean Gotman,et al.  Evaluation of EEG localization methods using realistic simulations of interictal spikes , 2006, NeuroImage.

[12]  S. Dehaene,et al.  Timing of the brain events underlying access to consciousness during the attentional blink , 2005, Nature Neuroscience.

[13]  Nelson J. Trujillo-Barreto,et al.  Bayesian model averaging in EEG/MEG imaging , 2004, NeuroImage.

[14]  Olaf Hauk,et al.  Keep it simple: a case for using classical minimum norm estimation in the analysis of EEG and MEG data , 2004, NeuroImage.

[15]  A. Grinvald,et al.  Spontaneously emerging cortical representations of visual attributes , 2003, Nature.

[16]  Stephen M Smith,et al.  Fast robust automated brain extraction , 2002, Human brain mapping.

[17]  Jean Gotman,et al.  The influence of electrode location errors on EEG dipole source localization with a realistic head model , 2001, Clinical Neurophysiology.

[18]  Stanley A. Klein,et al.  The folding fingerprint of visual cortex reveals the timing of human V1 and V2 , 2010, NeuroImage.

[19]  Doris Y. Tsao,et al.  Stereopsis Activates V3A and Caudal Intraparietal Areas in Macaques and Humans , 2003, Neuron.

[20]  Julien Lefèvre,et al.  Optical flow approaches to the identification of brain dynamics , 2009, Human brain mapping.

[21]  Alex R. Wade,et al.  Representation of Concurrent Stimuli by Population Activity in Visual Cortex , 2014, Neuron.

[22]  Markus Junghöfer,et al.  Selective Visual Attention to Emotion , 2007, The Journal of Neuroscience.

[23]  R. Leahy,et al.  EEG and MEG: forward solutions for inverse methods , 1999, IEEE Transactions on Biomedical Engineering.

[24]  Justin M. Ales,et al.  Disparity-Tuned Population Responses from Human Visual Cortex , 2011, The Journal of Neuroscience.

[25]  A K Liu,et al.  Spatiotemporal imaging of human brain activity using functional MRI constrained magnetoencephalography data: Monte Carlo simulations. , 1998, Proceedings of the National Academy of Sciences of the United States of America.

[26]  M. Kupersmith Human Brain Electrophysiology , 1989 .

[27]  Polina Golland,et al.  Multimodal functional imaging using fMRI-informed regional EEG/MEG source estimation , 2009, NeuroImage.

[28]  Adrian E. Raftery,et al.  Bayesian model averaging: development of an improved multi-class, gene selection and classification tool for microarray data , 2005, Bioinform..

[29]  J. Maunsell,et al.  Attention improves performance primarily by reducing interneuronal correlations , 2009, Nature Neuroscience.

[30]  A. Cichocki,et al.  Steady-state visually evoked potentials: Focus on essential paradigms and future perspectives , 2010, Progress in Neurobiology.

[31]  B. Wandell,et al.  Visual Field Maps in Human Cortex , 2007, Neuron.

[32]  J. E. Moran,et al.  Multi-Resolution FOCUSS: A Source Imaging Technique Applied to MEG Data , 2005, Brain Topography.

[33]  Gregory C DeAngelis,et al.  Coding of horizontal disparity and velocity by MT neurons in the alert macaque. , 2003, Journal of neurophysiology.

[34]  Chantal Delon-Martin,et al.  Sequence of pattern onset responses in the human visual areas: an fMRI constrained VEP source analysis , 2004, NeuroImage.

[35]  J. Mollon,et al.  Latency characteristics of the short-wavelength-sensitive cones and their associated pathways. , 2009, Journal of vision.

[36]  Bin He,et al.  Mapping the bilateral visual integration by EEG and fMRI , 2009, NeuroImage.

[37]  Alex R. Wade,et al.  Functional measurements of human ventral occipital cortex: retinotopy and colour. , 2002, Philosophical transactions of the Royal Society of London. Series B, Biological sciences.

[38]  Alex R. Wade,et al.  Visual field maps and stimulus selectivity in human ventral occipital cortex , 2005, Nature Neuroscience.

[39]  A. Dale,et al.  Improved Localizadon of Cortical Activity by Combining EEG and MEG with MRI Cortical Surface Reconstruction: A Linear Approach , 1993, Journal of Cognitive Neuroscience.

[40]  Masa-aki Sato,et al.  Hierarchical Bayesian estimation for MEG inverse problem , 2004, NeuroImage.

[41]  N. Logothetis What we can do and what we cannot do with fMRI , 2008, Nature.

[42]  I F Gorodnitsky,et al.  Neuromagnetic source imaging with FOCUSS: a recursive weighted minimum norm algorithm. , 1995, Electroencephalography and clinical neurophysiology.

[43]  E. Halgren,et al.  Source estimates for MEG/EEG visual evoked responses constrained by multiple, retinotopically‐mapped stimulus locations , 2009, Human brain mapping.

[44]  Dimitrios Pantazis,et al.  Coherent neural representation of hand speed in humans revealed by MEG imaging , 2007, Proceedings of the National Academy of Sciences.

[45]  Carlos H. Muravchik,et al.  General bounds for electrode mislocation on the EEG inverse problem , 2011, Comput. Methods Programs Biomed..

[46]  Alex R. Wade,et al.  Cue-Invariant Networks for Figure and Background Processing in Human Visual Cortex , 2006, The Journal of Neuroscience.

[47]  Seppo P. Ahlfors,et al.  Assessing and improving the spatial accuracy in MEG source localization by depth-weighted minimum-norm estimates , 2006, NeuroImage.

[48]  D. Lehmann,et al.  Low resolution electromagnetic tomography: a new method for localizing electrical activity in the brain. , 1994, International journal of psychophysiology : official journal of the International Organization of Psychophysiology.

[49]  John W Belliveau,et al.  Monte Carlo simulation studies of EEG and MEG localization accuracy , 2002, Human brain mapping.

[50]  Masa-aki Sato,et al.  Evaluation of hierarchical Bayesian method through retinotopic brain activities reconstruction from fMRI and MEG signals , 2008, NeuroImage.

[51]  Klaus Scheffler,et al.  Functional Fields in Human Auditory Cortex Revealed by Time-Resolved fMRI without Interference of EPI Noise , 2001, NeuroImage.

[52]  W. Penfield,et al.  SOMATIC MOTOR AND SENSORY REPRESENTATION IN THE CEREBRAL CORTEX OF MAN AS STUDIED BY ELECTRICAL STIMULATION , 1937 .

[53]  Bertrand Thirion,et al.  Phase delays within visual cortex shape the response to steady-state visual stimulation , 2011, NeuroImage.

[54]  Mckee Suzanne Disparity tuning of the population responses in the human visual cortex: an EEG source imaging study , 2010 .

[55]  Karl J. Friston,et al.  MEG source localization under multiple constraints: An extended Bayesian framework , 2006, NeuroImage.

[56]  Polina Golland,et al.  Multimodal functional imaging using fMRI-Informed regional EEG/MEG estimation , 2009 .

[57]  Chang-Hwan Im,et al.  Assessment criteria for MEG/EEG cortical patch tests. , 2003, Physics in medicine and biology.

[58]  M. Hämäläinen,et al.  Realistic conductivity geometry model of the human head for interpretation of neuromagnetic data , 1989, IEEE Transactions on Biomedical Engineering.

[59]  J W Belliveau,et al.  Borders of multiple visual areas in humans revealed by functional magnetic resonance imaging. , 1995, Science.

[60]  Richard M. Leahy,et al.  Electromagnetic brain mapping , 2001, IEEE Signal Process. Mag..

[61]  Bart Vanrumste,et al.  Review on solving the forward problem in EEG source analysis , 2007, Journal of NeuroEngineering and Rehabilitation.

[62]  Bin He,et al.  fMRI–EEG integrated cortical source imaging by use of time-variant spatial constraints , 2008, NeuroImage.

[63]  David P. Wipf,et al.  A unified Bayesian framework for MEG/EEG source imaging , 2009, NeuroImage.

[64]  Justin M. Ales,et al.  Assessing direction-specific adaptation using the steady-state visual evoked potential: results from EEG source imaging. , 2009, Journal of vision.

[65]  D. M. Schmidt,et al.  Bayesian inference applied to the electromagnetic inverse problem , 1998, Human brain mapping.

[66]  Benoit Cottereau,et al.  Multiresolution imaging of MEG cortical sources using an explicit piecewise model , 2007, NeuroImage.

[67]  D. Heeger,et al.  Retinotopy and Functional Subdivision of Human Areas MT and MST , 2002, The Journal of Neuroscience.

[68]  P. Rossini,et al.  Multimodal integration of EEG and MEG data: A simulation study with variable signal‐to‐noise ratio and number of sensors , 2004, Human brain mapping.

[69]  C. Metz ROC Methodology in Radiologic Imaging , 1986, Investigative radiology.

[70]  G. DeAngelis,et al.  Cortical area MT and the perception of stereoscopic depth , 1998, Nature.

[71]  Katrin Amunts,et al.  Locating the functional and anatomical boundaries of human primary visual cortex , 2009, NeuroImage.

[72]  P. Nunez,et al.  On the Relationship of Synaptic Activity to Macroscopic Measurements: Does Co-Registration of EEG with fMRI Make Sense? , 2004, Brain Topography.

[73]  R. Ilmoniemi,et al.  Magnetoencephalography-theory, instrumentation, and applications to noninvasive studies of the working human brain , 1993 .

[74]  J. Bullier Integrated model of visual processing , 2001, Brain Research Reviews.

[75]  E. Halgren,et al.  Dynamic Statistical Parametric Mapping Combining fMRI and MEG for High-Resolution Imaging of Cortical Activity , 2000, Neuron.

[76]  David J. Fleet,et al.  Human cortical activity correlates with stereoscopic depth perception. , 2001, Journal of neurophysiology.

[77]  Christoph M. Michel,et al.  Electrical neuroimaging based on biophysical constraints , 2004, NeuroImage.

[78]  D. Ferster,et al.  Synchronous Membrane Potential Fluctuations in Neurons of the Cat Visual Cortex , 1999, Neuron.