An Assessment of Earth's Climate Sensitivity Using Multiple Lines of Evidence

We assess evidence relevant to Earth's equilibrium climate sensitivity per doubling of atmospheric CO2, characterized by an effective sensitivity S. This evidence includes feedback process understanding, the historical climate record, and the paleoclimate record. An S value lower than 2 K is difficult to reconcile with any of the three lines of evidence. The amount of cooling during the Last Glacial Maximum provides strong evidence against values of S greater than 4.5 K. Other lines of evidence in combination also show that this is relatively unlikely. We use a Bayesian approach to produce a probability density function (PDF) for S given all the evidence, including tests of robustness to difficult‐to‐quantify uncertainties and different priors. The 66% range is 2.6–3.9 K for our Baseline calculation and remains within 2.3–4.5 K under the robustness tests; corresponding 5–95% ranges are 2.3–4.7 K, bounded by 2.0–5.7 K (although such high‐confidence ranges should be regarded more cautiously). This indicates a stronger constraint on S than reported in past assessments, by lifting the low end of the range. This narrowing occurs because the three lines of evidence agree and are judged to be largely independent and because of greater confidence in understanding feedback processes and in combining evidence. We identify promising avenues for further narrowing the range in S, in particular using comprehensive models and process understanding to address limitations in the traditional forcing‐feedback paradigm for interpreting past changes.

[1]  Michael E. Schlesinger,et al.  Objective estimation of the probability density function for climate sensitivity , 2001 .

[2]  A. Hall,et al.  What Controls the Strength of Snow-Albedo Feedback? , 2007 .

[3]  P. Clark,et al.  Closing the sea level budget at the Last Glacial Maximum , 2014, Proceedings of the National Academy of Sciences.

[4]  Sukyoung Lee,et al.  Recent multidecadal strengthening of the Walker circulation across the tropical Pacific , 2013 .

[5]  Makiko Sato,et al.  Climate change and trace gases , 2007, Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[6]  J. Murphy Transient Response of the Hadley Centre Coupled Ocean-Atmosphere Model to Increasing Carbon Dioxide. Part III: Analysis of Global-Mean Response Using Simple Models , 1995 .

[7]  M. Kučera,et al.  Boron isotope-based seasonal paleo-pH reconstruction for the Southeast Atlantic - A multispecies approach using habitat preference of planktonic foraminifera , 2018 .

[8]  P. Cox,et al.  An emergent constraint on Transient Climate Response from simulated historical warming in CMIP6 models , 2020 .

[9]  Allison A. Wing,et al.  Clouds, Circulation, and Climate Sensitivity in a Radiative‐Convective Equilibrium Channel Model , 2016 .

[10]  G. Danabasoglu,et al.  Equilibrium Climate Sensitivity: Is It Accurate to Use a Slab Ocean Model? , 2009 .

[11]  R. Zeebe Time-dependent climate sensitivity and the legacy of anthropogenic greenhouse gas emissions , 2013, Proceedings of the National Academy of Sciences.

[12]  Roger M. Cooke,et al.  Expert judgement and uncertainty quantification for climate change , 2016 .

[13]  Y. Otsuka,et al.  Global imaging of polar cap patches with dual airglow imagers , 2014 .

[14]  R. S. Thompson,et al.  Pollen-based continental climate reconstructions at 6 and 21 ka: a global synthesis , 2011 .

[15]  Kevin E. Trenberth,et al.  Climate variability and relationships between top‐of‐atmosphere radiation and temperatures on Earth , 2015 .

[16]  Xiaodong Xu,et al.  Determination of band offsets, hybridization, and exciton binding in 2D semiconductor heterostructures , 2017, Science Advances.

[17]  C. Ramsey,et al.  Rapid coupling between ice volume and polar temperature over the past 150,000 years , 2012, Nature.

[18]  P. Valdes,et al.  Last glacial maximum constraints on the Earth System model HadGEM2-ES , 2015, Climate Dynamics.

[19]  G. Johnson,et al.  Deep and abyssal ocean warming from 35 years of repeat hydrography , 2016 .

[20]  Jeffery R. Scott,et al.  Southern Ocean warming delayed by circumpolar upwelling and equatorward transport , 2016 .

[21]  Yi Huang,et al.  Radiative Forcing of Quadrupling CO2 , 2014 .

[22]  G. Vecchi,et al.  Examining the Tropical Pacific's Response to Global Warming , 2008 .

[23]  W. Collins,et al.  The spectroscopic foundation of radiative forcing of climate by carbon dioxide , 2016, Geophysical research letters.

[24]  J. Mitrovica,et al.  The PRISM4 (mid-Piacenzian) paleoenvironmental reconstruction , 2016 .

[25]  Piers M. Forster,et al.  Inference of Climate Sensitivity from Analysis of Earth's Energy Budget , 2016 .

[26]  D. Frierson,et al.  Terrestrial Aridity and Its Response to Greenhouse Warming across CMIP5 Climate Models , 2015 .

[27]  M. Yoshimori,et al.  A Comparison of Climate Feedback Strength between CO2 Doubling and LGM Experiments , 2008 .

[28]  J. Kutzbach,et al.  The Response of Northern Hemisphere Extratropical Climate and Vegetation to Orbitally Induced Changes in Insolation during the Last Interglaciation , 1995, Quaternary Research.

[29]  K. Lambeck,et al.  The North American Late Wisconsin ice sheet and mantle viscosity from glacial rebound analyses , 2017 .

[30]  P. Guttorp,et al.  Bayesian estimation of climate sensitivity based on a simple climate model fitted to observations of hemispheric temperatures and global ocean heat content , 2012 .

[31]  R. Lindzen,et al.  On the observational determination of climate sensitivity and its implications , 2010 .

[32]  D. Frierson,et al.  Robust future precipitation declines in CMIP5 largely reflect the poleward expansion of model subtropical dry zones , 2012 .

[33]  Ming Zhao An Investigation of the Connections among Convection, Clouds, and Climate Sensitivity in a Global Climate Model , 2014 .

[34]  Brian J. Soden,et al.  Quantifying Climate Feedbacks Using Radiative Kernels , 2008 .

[35]  Timothy D. Herbert,et al.  Tropical Ocean Temperatures Over the Past 3.5 Million Years , 2010, Science.

[36]  Jonathan M. Gregory,et al.  A new method for diagnosing radiative forcing and climate sensitivity , 2004 .

[37]  M. Bigler,et al.  Dust-climate couplings over the past 800,000 years from the EPICA Dome C ice core , 2008, Nature.

[38]  Karen M. Shell,et al.  Using the Radiative Kernel Technique to Calculate Climate Feedbacks in NCAR's Community Atmospheric Model , 2008 .

[39]  G. North,et al.  Test of the Fixed Anvil Temperature Hypothesis , 2012 .

[40]  R. Pancost,et al.  Reply to 'Pliocene warmth and gradients' , 2015 .

[41]  Andrew E. Dessler,et al.  Observations of Climate Feedbacks over 2000–10 and Comparisons to Climate Models , 2013 .

[42]  Shin-ichi Iga,et al.  High cloud increase in a perturbed SST experiment with a global nonhydrostatic model including explicit convective processes , 2014 .

[43]  M. Webb,et al.  How accurately can the climate sensitivity to CO2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\hbox {CO}_{2}$$\end{ , 2019, Climate Dynamics.

[44]  P. O’Gorman,et al.  Understanding Decreases in Land Relative Humidity with Global Warming: Conceptual Model and GCM Simulations , 2016, 1605.00380.

[45]  S. Sherwood,et al.  A Drier Future? , 2014, Science.

[46]  Francis W. Zwiers,et al.  Use of models in detection and attribution of climate change , 2011 .

[47]  Roger Jones,et al.  Bayesian estimation of climate sensitivity using observationally constrained simple climate models , 2016 .

[48]  S. Solomon,et al.  Observed changes in Brewer–Dobson circulation for 1980–2018 , 2019, Environmental Research Letters.

[49]  N. Unger,et al.  Strong chemistry‐climate feedbacks in the Pliocene , 2014 .

[50]  C. Bretherton,et al.  Cloud feedbacks on greenhouse warming in the superparameterized climate model SP‐CCSM4 , 2014 .

[51]  Michael P. Byrne,et al.  Trends in continental temperature and humidity directly linked to ocean warming , 2018, Proceedings of the National Academy of Sciences.

[52]  G. Dickens,et al.  Carbon dioxide forcing alone insufficient to explain Palaeocene–Eocene Thermal Maximum warming , 2009 .

[53]  J. Norris,et al.  North Pacific Cloud Feedbacks Inferred from Synoptic-Scale Dynamic and Thermodynamic Relationships , 2005 .

[54]  T. Andrews,et al.  New Generation of Climate Models Track Recent Unprecedented Changes in Earth's Radiation Budget Observed by CERES , 2020, Geophysical Research Letters.

[55]  A. Donohoe,et al.  Shortwave and longwave radiative contributions to global warming under increasing CO2 , 2014, Proceedings of the National Academy of Sciences.

[56]  Mark D. Zelinka,et al.  The observed sensitivity of high clouds to mean surface temperature anomalies in the tropics , 2010 .

[57]  J. Mülmenstädt,et al.  Multi-model simulations of aerosol and ozone radiative forcing due to anthropogenic emission changes during the period 1990-2015 , 2017 .

[58]  C. Bretherton,et al.  Cloud and circulation feedbacks in a near‐global aquaplanet cloud‐resolving model , 2016 .

[59]  M. Watanabe,et al.  On the robustness of tropospheric adjustment in CMIP5 models , 2012 .

[60]  J. Mülmenstädt,et al.  Bounding Global Aerosol Radiative Forcing of Climate Change , 2020, Reviews of geophysics.

[61]  J. Gregory,et al.  A refined model for the Earth’s global energy balance , 2019, Climate Dynamics.

[62]  V. Masson‐Delmotte,et al.  Target atmospheric CO2: Supporting material , 2008, 0804.1135.

[63]  R. Sausen,et al.  Interactive ozone induces a negative feedback in CO2‐driven climate change simulations , 2014 .

[64]  P. O’Gorman,et al.  Link between land‐ocean warming contrast and surface relative humidities in simulations with coupled climate models , 2013 .

[65]  Piers M. Forster,et al.  Comparison of surface albedo feedback in climate models and observations , 2014 .

[66]  Jonathan M. Gregory,et al.  Time Variation of Effective Climate Sensitivity in GCMs , 2008 .

[67]  A. Hall,et al.  Using the current seasonal cycle to constrain snow albedo feedback in future climate change , 2006 .

[68]  J. Hansen,et al.  Efficacy of climate forcings , 2005 .

[69]  C. Zhou,et al.  Cirrus feedback on interannual climate fluctuations , 2014 .

[70]  Michael Lautenschlager,et al.  Modelling Global Vegetation Patterns and Terrestrial Carbon Storage at the Last Glacial Maximum , 1993 .

[71]  Chao Li,et al.  Deep-ocean heat uptake and equilibrium climate response , 2013, Climate Dynamics.

[72]  R. Bintanja,et al.  Cenozoic global ice-volume and temperature simulations with 1-D ice-sheet models forced by benthic δ18O records , 2010, Annals of Glaciology.

[73]  A. Ridgwell,et al.  A probabilistic assessment of the rapidity of PETM onset , 2017, Nature Communications.

[74]  Anny Cazenave,et al.  Evaluation of the Global Mean Sea Level Budget between 1993 and 2014 , 2016, Surveys in Geophysics.

[75]  Vincent Noel,et al.  Where and when will we observe cloud changes due to climate warming? , 2014 .

[76]  M. Holden,et al.  A lower and more constrained estimate of climate sensitivity using updated observations and detailed radiative forcing time series , 2013 .

[77]  H. Chepfer,et al.  Space lidar observations constrain longwave cloud feedback , 2018, Scientific Reports.

[78]  M. Collins,et al.  Model tropical Atlantic biases underpin diminished Pacific decadal variability , 2018, Nature Climate Change.

[79]  Mark D. Zelinka,et al.  Why is longwave cloud feedback positive , 2010 .

[80]  G. Tselioudis,et al.  CMIP5 models' shortwave cloud radiative response and climate sensitivity linked to the climatological Hadley cell extent , 2017, Geophysical Research Letters.

[81]  Bruce A. Wielicki,et al.  Statistical Analyses of Satellite Cloud Object Data from CERES. Part II: Tropical Convective Cloud Objects during 1998 El Niño and Evidence for Supporting the Fixed Anvil Temperature Hypothesis , 2007 .

[82]  A. Gettelman,et al.  Climate Feedback Variance and the Interaction of Aerosol Forcing and Feedbacks , 2016 .

[83]  K. Armour Energy budget constraints on climate sensitivity in light of inconstant climate feedbacks , 2017 .

[84]  T. Andrews,et al.  LongRunMIP: Motivation and Design for a Large Collection of Millennial-Length AOGCM Simulations , 2019, Bulletin of the American Meteorological Society.

[85]  K. Lambeck,et al.  Ice-sheet configuration in the CMIP5/PMIP3 Last Glacial Maximum experiments , 2015 .

[86]  K. Rosenlof,et al.  Stratospheric water vapor feedback , 2013, Proceedings of the National Academy of Sciences.

[87]  Yi Huang,et al.  Inhomogeneous radiative forcing of homogeneous greenhouse gases , 2016 .

[88]  J. Hack,et al.  Diagnostic study of climate feedback processes in atmospheric general circulation models , 1994 .

[89]  G. Meehl,et al.  The seasonal cycle in coupled ocean-atmosphere general circulation models , 2000 .

[90]  A. Ganopolski,et al.  The Effect of Obliquity‐Driven Changes on Paleoclimate Sensitivity During the Late Pleistocene , 2018, Geophysical Research Letters.

[91]  Mark D. Zelinka,et al.  Evidence for climate change in the satellite cloud record , 2016, Nature.

[92]  Karl E. Taylor,et al.  An overview of CMIP5 and the experiment design , 2012 .

[93]  M. Shupe,et al.  Moisture and dynamical interactions maintaining decoupled Arctic mixed-phase stratocumulus in the presence of a humidity inversion , 2011 .

[94]  S. Manabe,et al.  Summer dryness due to an increase of atmospheric CO2 concentration , 1981 .

[95]  B. Stevens,et al.  The influence of internal variability on Earth's energy balance framework and implications for estimating climate sensitivity , 2018 .

[96]  David M. Romps,et al.  Formation of Tropical Anvil Clouds by Slow Evaporation , 2018, Geophysical Research Letters.

[97]  J. Kay,et al.  The influence of extratropical cloud phase and amount feedbacks on climate sensitivity , 2018, Climate Dynamics.

[98]  S. Levitus,et al.  World ocean heat content and thermosteric sea level change (0–2000 m), 1955–2010 , 2012 .

[99]  J. Annan,et al.  A new global reconstruction of temperature changes at the Last Glacial Maximum , 2012 .

[100]  A. Genio,et al.  The Temperature Dependence of the Liquid Water Path of Low Clouds in the Southern Great Plains , 2000 .

[101]  R. V. D. Wal,et al.  Transient nature of the Earth's climate and the implications for the interpretation of benthic δ18 O records , 2012 .

[102]  Isaac M. Held,et al.  Importance of Ocean Heat Uptake Efficacy to Transient Climate Change , 2010 .

[103]  Andrew M. Stuart,et al.  Evaluating Data Assimilation Algorithms , 2011, ArXiv.

[104]  M. Maslin,et al.  Climate model and proxy data constraints on ocean warming across the Paleocene-Eocene Thermal Maximum , 2013 .

[105]  Christopher C. Drovandi,et al.  Using History Matching for Prior Choice , 2016, Technometrics.

[106]  J. Tierney,et al.  Glacial cooling and climate sensitivity revisited , 2019, Nature.

[107]  S. Klein,et al.  Impact of decadal cloud variations on the Earth/'s energy budget , 2016 .

[108]  N. Mahowald,et al.  Radiative forcing of climate by ice-age atmospheric dust , 2003 .

[109]  G. Hegerl,et al.  Beyond equilibrium climate sensitivity , 2017 .

[110]  E. Hawkins,et al.  Estimating Changes in Global Temperature since the Preindustrial Period , 2017 .

[111]  T. Andrews,et al.  Intermodel Spread in the Pattern Effect and Its Contribution to Climate Sensitivity in CMIP5 and CMIP6 Models , 2020 .

[112]  Graeme L. Stephens,et al.  Radiation Profiles in Extended Water Clouds. II: Parameterization Schemes , 1978 .

[113]  B. Soden,et al.  On the compensation between cloud feedback and cloud adjustment in climate models , 2018, Climate Dynamics.

[114]  B. Medeiros,et al.  Mixed-phase clouds cause climate model biases in Arctic wintertime temperature inversions , 2014, Climate Dynamics.

[115]  S. Bony,et al.  Shallowness of tropical low clouds as a predictor of climate models’ response to warming , 2016, Climate Dynamics.

[116]  S. Manabe,et al.  The Effects of Doubling the CO2 Concentration on the climate of a General Circulation Model , 1975 .

[117]  K. Taylor,et al.  Contributions of Different Cloud Types to Feedbacks and Rapid Adjustments in CMIP5 , 2012 .

[118]  T. Andrews,et al.  Strong Dependence of Atmospheric Feedbacks on Mixed‐Phase Microphysics and Aerosol‐Cloud Interactions in HadGEM3 , 2019, Journal of advances in modeling earth systems.

[119]  D. Battisti,et al.  The dependence of transient climate sensitivity and radiative feedbacks on the spatial pattern of ocean heat uptake , 2014 .

[120]  David B. Dunson,et al.  Bayesian data analysis, third edition , 2013 .

[121]  S. Bony,et al.  Observational Evidence for Relationships between the Degree of Aggregation of Deep Convection, Water Vapor, Surface Fluxes, and Radiation , 2012 .

[122]  R. Seager,et al.  Strengthening tropical Pacific zonal sea surface temperature gradient consistent with rising greenhouse gases , 2019, Nature Climate Change.

[123]  Sandy P. Harrison,et al.  Climate and CO2 controls on global vegetation distribution at the last glacial maximum: analysis based on palaeovegetation data, biome modelling and palaeoclimate simulations , 2003 .

[124]  K. Caldeira,et al.  Greater future global warming inferred from Earth’s recent energy budget , 2017, Nature.

[125]  K. Trenberth,et al.  Simulation of Present-Day and Twenty-First-Century Energy Budgets of the Southern Oceans , 2010 .

[126]  G. Ramstein,et al.  Large-scale features of Pliocene climate: results from the Pliocene Model Intercomparison Project , 2012 .

[127]  Thorsten Mauritsen,et al.  Robust increase in equilibrium climate sensitivity under global warming , 2013 .

[128]  Yan Zhao,et al.  Evaluation of climate models using palaeoclimatic data , 2012 .

[129]  Ian Eisenman,et al.  Observational determination of albedo decrease caused by vanishing Arctic sea ice , 2014, Proceedings of the National Academy of Sciences.

[130]  S. Bony,et al.  On the Correspondence between Mean Forecast Errors and Climate Errors in CMIP5 Models , 2013 .

[131]  L. Lourens,et al.  Persistent 400,000-year variability of Antarctic ice volume and the carbon cycle is revealed throughout the Plio-Pleistocene , 2014, Nature Communications.

[132]  C. Bitz,et al.  Radiative Feedbacks From Stochastic Variability in Surface Temperature and Radiative Imbalance , 2018, Geophysical Research Letters.

[133]  D. Romps An Analytical Model for Tropical Relative Humidity , 2014 .

[134]  H. Douville,et al.  Midlatitude Summer Drying: An Underestimated Threat in CMIP5 Models? , 2017 .

[135]  Philip G. Sansom,et al.  How Are Emergent Constraints Quantifying Uncertainty and What Do They Leave Behind? , 2019, Bulletin of the American Meteorological Society.

[136]  T. Frölicher,et al.  Sensitivity of radiative forcing, ocean heat uptake, and climate feedback to changes in anthropogenic greenhouse gases and aerosols , 2015 .

[137]  D. Lunt,et al.  Plio-Pleistocene climate sensitivity evaluated using high-resolution CO2 records , 2015, Nature.

[138]  J. Annan,et al.  On the meaning of independence in climate science , 2016 .

[139]  G. Mann,et al.  A review of natural aerosol interactions and feedbacks within the Earth system , 2010 .

[140]  M. Newman,et al.  Reconciling disparate twentieth-century Indo-Pacific ocean temperature trends in the instrumental record , 2012 .

[141]  T. Storelvmo,et al.  Cloud Phase Changes Induced by CO2 Warming—a Powerful yet Poorly Constrained Cloud-Climate Feedback , 2015, Current Climate Change Reports.

[142]  B. McAvaney,et al.  A study of general circulation model climate feedbacks determined from perturbed sea surface temperature experiments , 1997 .

[143]  J. Norris,et al.  Reducing the uncertainty in subtropical cloud feedback , 2015 .

[144]  B. Stevens,et al.  Climate feedback efficiency and synergy , 2013, Climate Dynamics.

[145]  Reto Knutti,et al.  Energy budget constraints on climate response , 2013 .

[146]  B. Tian Spread of model climate sensitivity linked to double‐Intertropical Convergence Zone bias , 2015 .

[147]  J. Zachos,et al.  Anthropogenic carbon release rate unprecedented during the past 66 million years , 2015 .

[148]  J. Annan,et al.  Could the Pliocene constrain the equilibrium climate sensitivity , 2016 .

[149]  John F. B. Mitchell,et al.  The time‐dependence of climate sensitivity , 2000 .

[150]  D. Shindell Inhomogeneous forcing and transient climate sensitivity , 2014 .

[151]  Jonathan M. Gregory,et al.  Accounting for Changing Temperature Patterns Increases Historical Estimates of Climate Sensitivity , 2018, Geophysical Research Letters.

[152]  C. Bretherton,et al.  Marine low cloud sensitivity to an idealized climate change: The CGILS LES intercomparison , 2013 .

[153]  Aixue Hu,et al.  Contribution of the Interdecadal Pacific Oscillation to twentieth-century global surface temperature trends , 2016 .

[154]  S. Manabe,et al.  Cloud Feedback Processes in a General Circulation Model , 1988 .

[155]  S. Bony,et al.  Thermodynamic constraint on the depth of the global tropospheric circulation , 2017, Proceedings of the National Academy of Sciences.

[156]  J. Seeley,et al.  FAT or FiTT: Are Anvil Clouds or the Tropopause Temperature Invariant? , 2019, Geophysical Research Letters.

[157]  A. Nyblade,et al.  Seismic anisotropy in eastern Africa, mantle flow, and the African superplume , 2013 .

[158]  N. Urban,et al.  Slow release of fossil carbon during the Palaeocene-Eocene Thermal Maximum , 2011 .

[159]  M. Ziegler,et al.  CO2 over the past 5 million years : Continuous simulation and new δ11B-based proxy data , 2016 .

[160]  Andrew A. Kulpecz,et al.  High tide of the warm Pliocene: Implications of global sea level for Antarctic deglaciation , 2012 .

[161]  F. Kucharski,et al.  Tropical Atlantic influence on Pacific variability and mean state in the twentieth century in observations and CMIP5 , 2015, Climate Dynamics.

[162]  B. Santer,et al.  External Influences on Modeled and Observed Cloud Trends , 2015 .

[163]  Cloud Adjustment and its Role in CO2 Radiative Forcing and Climate Sensitivity: A Review , 2012, Surveys in Geophysics.

[164]  S. Warren,et al.  A 39-Yr Survey of Cloud Changes from Land Stations Worldwide 1971–2009: Long-Term Trends, Relation to Aerosols, and Expansion of the Tropical Belt , 2013 .

[165]  D. Hartmann,et al.  Connections Between Clouds, Radiation, and Midlatitude Dynamics: a Review , 2015, Current Climate Change Reports.

[166]  B. Stevens,et al.  Re-Examining the First Climate Models: Climate Sensitivity of a Modern Radiative–Convective Equilibrium Model , 2019, Journal of Climate.

[167]  M. Huber,et al.  Extreme warmth and heat-stressed plankton in the tropics during the Paleocene-Eocene Thermal Maximum , 2017, Science Advances.

[168]  L. Horowitz,et al.  Revisiting the Impact of Sea Salt on Climate Sensitivity , 2020, Geophysical Research Letters.

[169]  Shin-ichi Iga,et al.  Response of Upper Clouds in Global Warming Experiments Obtained Using a Global Nonhydrostatic Model with Explicit Cloud Processes , 2012 .

[170]  J. Norris,et al.  How Has Subtropical Stratocumulus and Associated Meteorology Changed since the 1980s , 2015 .

[171]  J. Fasullo,et al.  Constraints on Climate Sensitivity from Radiation Patterns in Climate Models , 2011 .

[172]  Olivier Boucher,et al.  Adjustments in the Forcing-Feedback Framework for Understanding Climate Change , 2014 .

[173]  S. Klein,et al.  Evaluating Emergent Constraints on Equilibrium Climate Sensitivity , 2018 .

[174]  Robert D. Cess,et al.  Radiative transfer due to atmospheric water vapor: Global considerations of the earth's energy balance , 1974 .

[175]  J. Lelieveld,et al.  Modelled suppression of boundary-layer clouds by plants in a CO2-rich atmosphere , 2012 .

[176]  G. Tselioudis,et al.  Midlatitude cloud shifts, their primary link to the Hadley cell, and their diverse radiative effects , 2016 .

[177]  T. Andrews,et al.  Equilibrium Climate Sensitivity Estimated by Equilibrating Climate Models , 2020, Geophysical Research Letters.

[178]  Simon Brewer,et al.  Climatic changes in Eurasia and Africa at the last glacial maximum and mid-Holocene: reconstruction from pollen data using inverse vegetation modelling , 2007 .

[179]  Olle Häggström,et al.  Equilibrium climate sensitivity in light of observations over the warming hiatus , 2015 .

[180]  A. Roberts,et al.  Sea-level and deep-sea-temperature variability over the past 5.3 million years , 2014, Nature.

[181]  S. Solomon,et al.  An observationally based energy balance for the Earth since 1950 , 2009 .

[182]  L. Polvani,et al.  Southern Hemisphere Cloud–Dynamics Biases in CMIP5 Models and Their Implications for Climate Projections , 2014 .

[183]  Glen P. Peters,et al.  Emissions – the ‘business as usual’ story is misleading , 2020, Nature.

[184]  B. Sanderson Relating climate sensitivity indices to projection uncertainty , 2019, Earth System Dynamics.

[185]  P. Huybers,et al.  Slow climate mode reconciles historical and model-based estimates of climate sensitivity , 2017, Science Advances.

[186]  Carl A. Mears,et al.  Volcanic contribution to decadal changes in tropospheric temperature , 2014 .

[187]  Impact of dataset choice on calculations of the short‐term cloud feedback , 2013 .

[188]  P. Huybers Compensation between Model Feedbacks and Curtailment of Climate Sensitivity , 2010 .

[189]  Sungsu Park,et al.  Intercomparison of model simulations of mixed‐phase clouds observed during the ARM Mixed‐Phase Arctic Cloud Experiment. I: single‐layer cloud , 2009 .

[190]  D. Dommenget,et al.  May common model biases reduce CMIP5’s ability to simulate the recent Pacific La Niña-like cooling? , 2018, Climate Dynamics.

[191]  Sonia I. Seneviratne,et al.  Land–atmosphere feedbacks amplify aridity increase over land under global warming , 2016 .

[192]  D. Heslop,et al.  Bipolar seesaw control on last interglacial sea level , 2015, Nature.

[193]  B. Wielicki,et al.  The Iris Hypothesis: A Negative or Positive Cloud Feedback?. , 2002 .

[194]  C. Bretherton,et al.  An Energy-Balance Analysis of Deep Convective Self-Aggregation above Uniform SST , 2005 .

[195]  C. Bretherton,et al.  CGILS Phase 2 LES intercomparison of response of subtropical marine low cloud regimes to CO2 quadrupling and a CMIP3 composite forcing change , 2016 .

[196]  C. Zhai,et al.  Weakening and strengthening structures in the Hadley Circulation change under global warming and implications for cloud response and climate sensitivity , 2014 .

[197]  K. Cowtan,et al.  Coverage bias in the HadCRUT4 temperature series and its impact on recent temperature trends , 2014 .

[198]  On the Causal Relationship Between the Moist Diabatic Circulation and Cloud Rapid Adjustment to Increasing CO2 , 2019, Journal of Advances in Modeling Earth Systems.

[199]  Chris Hope,et al.  The $10 trillion value of better information about the transient climate response , 2015, Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[200]  S. Bony,et al.  On the interpretation of inter-model spread in CMIP5 climate sensitivity estimates , 2013, Climate Dynamics.

[201]  Mark D. Zelinka,et al.  Computing and Partitioning Cloud Feedbacks Using Cloud Property Histograms. Part II: Attribution to Changes in Cloud Amount, Altitude, and Optical Depth , 2012 .

[202]  P. Köhler,et al.  Including the efficacy of land ice changes in deriving climate sensitivity from paleodata , 2019, Earth System Dynamics.

[203]  K. Lambeck,et al.  Sea level and global ice volumes from the Last Glacial Maximum to the Holocene , 2014, Proceedings of the National Academy of Sciences.

[204]  Sean L. Mackay,et al.  Two-million-year-old snapshots of atmospheric gases from Antarctic ice , 2019, Nature.

[205]  M. Holden,et al.  Climate sensitivity estimates – sensitivity to radiative forcing time series and observational data , 2018, Earth System Dynamics.

[206]  G. Hegerl,et al.  The early 20th century warming: Anomalies, causes, and consequences , 2018, Wiley interdisciplinary reviews. Climate change.

[207]  G. Haug,et al.  Causes of ice-age intensification across the Mid-Pleistocene Transition Journal Item , 2018 .

[208]  P. Bown,et al.  Insensitivity of alkenone carbon isotopes to atmospheric CO2 at low to moderate CO2 levels , 2018, Climate of the Past.

[209]  J. Gregory,et al.  Climate models without preindustrial volcanic forcing underestimate historical ocean thermal expansion , 2013 .

[210]  T. Stocker,et al.  Orbital and millennial-scale features of atmospheric CH4 over the past 800,000 years , 2008, Nature.

[211]  R. Stouffer Time Scales of Climate Response , 2004 .

[212]  Yan Xia,et al.  On the pattern of CO2 radiative forcing and poleward energy transport , 2017 .

[213]  M. Kelley,et al.  Evaluating models' response of tropical low clouds to SST forcings using CALIPSO observations , 2018, Atmospheric Chemistry and Physics.

[214]  E. J. Stone,et al.  Warm climates of the past—a lesson for the future? , 2013, Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[215]  B. Stevens,et al.  Missing iris effect as a possible cause of muted hydrological change and high climate sensitivity in models , 2015 .

[216]  G. Meehl,et al.  OVERVIEW OF THE COUPLED MODEL INTERCOMPARISON PROJECT , 2005 .

[217]  P. Mayewski,et al.  Atmospheric composition 1 million years ago from blue ice in the Allan Hills, Antarctica , 2015, Proceedings of the National Academy of Sciences.

[218]  Eelco J. Rohling,et al.  Antarctic temperature and global sea level closely coupled over the past five glacial cycles , 2009 .

[219]  D. Hartmann,et al.  On the influence of poleward jet shift on shortwave cloud feedback in global climate models , 2015 .

[220]  George C. Craig,et al.  Sensitivity of Tropical Convection to Sea Surface Temperature in the Absence of Large-Scale Flow , 1999 .

[221]  T. Schneider,et al.  Constraints on Climate Sensitivity from Space-Based Measurements of Low-Cloud Reflection , 2016 .

[222]  Y. Huang,et al.  Large‐scale ocean circulation‐cloud interactions reduce the pace of transient climate change , 2016 .

[223]  N. Lewis Objective Inference for Climate Parameters: Bayesian, Transformation-of-Variables, and Profile Likelihood Approaches , 2014 .

[224]  G. Schmidt,et al.  Implications for climate sensitivity from the response to individual forcings , 2016 .

[225]  M. Webb,et al.  Tropospheric Adjustment Induces a Cloud Component in CO2 Forcing , 2008 .

[226]  Syukuro Manabe,et al.  Large-Scale Changes of Soil Wetness Induced by an Increase in Atmospheric Carbon Dioxide , 1987 .

[227]  Martin B. Stolpe,et al.  Robust comparison of climate models with observations using blended land air and ocean sea surface temperatures , 2015 .

[228]  Agus Santoso,et al.  Recent intensification of wind-driven circulation in the Pacific and the ongoing warming hiatus , 2014 .

[229]  S. Klein,et al.  Low-Cloud Feedbacks from Cloud-Controlling Factors: A Review , 2017, Surveys in geophysics.

[230]  C. Bretherton,et al.  On the Relationship between Stratiform Low Cloud Cover and Lower-Tropospheric Stability , 2006 .

[231]  M. Webb,et al.  The Dependence of Global Cloud and Lapse Rate Feedbacks on the Spatial Structure of Tropical Pacific Warming , 2018 .

[232]  T. Andrews,et al.  Cloud Feedbacks, Rapid Adjustments, and the Forcing-Response Relationship in a Transient CO2Reversibility Scenario , 2014 .

[233]  M. Byrne Land–Ocean Warming Contrast over a Wide Range of Climates: Convective Quasi-Equilibrium Theory and Idealized Simulations , 2013 .

[234]  R. Colman,et al.  Correction to: On the relative strength of radiative feedbacks under climate variability and change , 2018, Climate Dynamics.

[235]  P. Valdes,et al.  How well do simulated last glacial maximum tropical temperatures constrain equilibrium climate sensitivity? , 2015 .

[236]  R. Berner,et al.  CO2 as a Primary Driver of Phanerozoic Climate Change , 2003 .

[237]  Yong Luo,et al.  Causes of model dry and warm bias over central U.S. and impact on climate projections , 2017, Nature Communications.

[238]  R. Sutton Climate Science Needs to Take Risk Assessment Much More Seriously , 2019, Bulletin of the American Meteorological Society.

[239]  R. Pancost,et al.  High sea surface temperatures in tropical warm pools during the Pliocene , 2014 .

[240]  James J. Hack,et al.  A New Sea Surface Temperature and Sea Ice Boundary Dataset for the Community Atmosphere Model , 2008 .

[241]  Eric Rignot,et al.  Forty-six years of Greenland Ice Sheet mass balance from 1972 to 2018 , 2019, Proceedings of the National Academy of Sciences.

[242]  E. Bazile,et al.  Introduction to CAUSES: Description of Weather and Climate Models and Their Near-Surface Temperature Errors in 5 day Hindcasts Near the Southern Great Plains , 2018, Journal of geophysical research. Atmospheres : JGR.

[243]  J. Lamarque,et al.  Stratospheric ozone chemistry feedbacks are not critical for the determination of climate sensitivity in CESM1(WACCM) , 2016 .

[244]  William M. Putman,et al.  Configuration and assessment of the GISS ModelE2 contributions to the CMIP5 archive , 2014 .

[245]  Myles R. Allen,et al.  Constraining climate forecasts: The role of prior assumptions , 2005 .

[246]  N. Cressie,et al.  A Hierarchical Statistical Framework for Emergent Constraints: Application to Snow‐Albedo Feedback , 2018, Geophysical Research Letters.

[247]  D. Hartmann,et al.  Observational evidence for a negative shortwave cloud feedback in middle to high latitudes , 2016 .

[248]  Bryan A. Baum,et al.  Clouds and the Earth's Radiant Energy System (CERES) , 1995 .

[249]  Gregory C. Johnson,et al.  Warming of Global Abyssal and Deep Southern Ocean Waters between the 1990s and 2000s: Contributions to Global Heat and Sea Level Rise Budgets* , 2010 .

[250]  J. Shakun Modest global-scale cooling despite extensive early Pleistocene ice sheets , 2017 .

[251]  Ken Caldeira,et al.  Dependence of global radiative feedbacks on evolving patterns of surface heat fluxes , 2016 .

[252]  D. Hartmann,et al.  Testing the Role of Radiation in Determining Tropical Cloud-Top Temperature , 2012 .

[253]  J. Curry,et al.  The implications for climate sensitivity of AR5 forcing and heat uptake estimates , 2015, Climate Dynamics.

[254]  Yunyan Zhang,et al.  Factors Controlling the Vertical Extent of Fair-Weather Shallow Cumulus Clouds over Land: Investigation of Diurnal-Cycle Observations Collected at the ARM Southern Great Plains Site , 2013 .

[255]  S. Klein,et al.  The relationship between interannual and long‐term cloud feedbacks , 2015 .

[256]  T. Andrews,et al.  Forcings, Feedbacks, and Climate Sensitivity in HadGEM3‐GC3.1 and UKESM1 , 2019, Journal of Advances in Modeling Earth Systems.

[257]  Estimating the Transient Climate Response from Observed Warming , 2018, Journal of Climate.

[258]  G. Schmidt,et al.  Early Pleistocene Obliquity‐Scale pCO2 Variability at ~1.5 Million Years Ago , 2018, Paleoceanography and paleoclimatology.

[259]  Michel Crucifix,et al.  Does the Last Glacial Maximum constrain climate sensitivity? , 2006 .

[260]  T. Mauritsen,et al.  Emergent constraints on Earth’s transient and equilibrium response to doubled CO2 from post-1970s global warming , 2019, Nature Geoscience.

[261]  Carolyn W. Snyder Evolution of global temperature over the past two million years , 2016, Nature.

[262]  J. Gregory,et al.  Multiannual Ocean–Atmosphere Adjustments to Radiative Forcing , 2016 .

[263]  R. Pierrehumbert,et al.  Observational evidence against strongly stabilizing tropical cloud feedbacks , 2017 .

[264]  Lijing Cheng,et al.  Insights into Earth’s Energy Imbalance from Multiple Sources , 2016 .

[265]  C. Bretherton,et al.  Combining Emergent Constraints for Climate Sensitivity , 2019, Journal of Climate.

[266]  Syukuro Manabe,et al.  Cloud cover and climate sensitivity. , 1980 .

[267]  Olivier Boucher,et al.  Carbon dioxide induced stomatal closure increases radiative forcing via a rapid reduction in low cloud , 2009 .

[268]  Dennis L. Hartmann,et al.  An important constraint on tropical cloud ‐ climate feedback , 2002 .

[269]  William D. Sellers,et al.  A Global Climatic Model Based on the Energy Balance of the Earth-Atmosphere System. , 1969 .

[270]  J. Hansen,et al.  EPICA Dome C record of glacial and interglacial intensities , 2010 .

[271]  W. Lipscomb,et al.  The PMIP4 contribution to CMIP6 – Part 2: Two interglacials, scientific objective and experimental design for Holocene and Last Interglacial simulations , 2016 .

[272]  A. Dessler,et al.  Cloud variations and the Earth's energy budget , 2011 .

[273]  K. Findell,et al.  A modeling study of dynamic and thermodynamic mechanisms for summer drying in response to global warming , 2005 .

[274]  J. Curry,et al.  The Impact of Recent Forcing and Ocean Heat Uptake Data on Estimates of Climate Sensitivity , 2018, Journal of Climate.

[275]  P. Cox,et al.  Emergent constraint on equilibrium climate sensitivity from global temperature variability , 2018, Nature.

[276]  A. Evan,et al.  Empirical Removal of Artifacts from the ISCCP and PATMOS-x Satellite Cloud Records , 2015 .

[277]  M. Frey,et al.  Greenland records of aerosol source and atmospheric lifetime changes from the Eemian to the Holocene , 2018, Nature Communications.

[278]  M. Weinelt,et al.  Constraints on the magnitude and patterns of ocean cooling at the Last Glacial Maximum: report of the MARGO Project , 2009 .

[279]  B. Schubert,et al.  Reconciliation of marine and terrestrial carbon isotope excursions based on changing atmospheric CO2 levels , 2013, Nature Communications.

[280]  B. Otto‐Bliesner,et al.  Pliocene Warmth Consistent With Greenhouse Gas Forcing , 2019, Geophysical Research Letters.

[281]  J. Marshall,et al.  Contributions of Greenhouse Gas Forcing and the Southern Annular Mode to Historical Southern Ocean Surface Temperature Trends , 2018 .

[282]  Roy W. Spencer,et al.  On the diagnosis of radiative feedback in the presence of unknown radiative forcing , 2009 .

[283]  S. Bony,et al.  Marine boundary layer clouds at the heart of tropical cloud feedback uncertainties in climate models , 2005 .

[284]  K. Taylor,et al.  Forcing, feedbacks and climate sensitivity in CMIP5 coupled atmosphere‐ocean climate models , 2012 .

[285]  P. Köhler,et al.  Comparing Climate Sensitivity, Past and Present. , 2018, Annual review of marine science.

[286]  G. Hegerl,et al.  Climate sensitivity constrained by temperature reconstructions over the past seven centuries , 2006, Nature.

[287]  T. Stocker,et al.  Stable Carbon Cycle–Climate Relationship During the Late Pleistocene , 2005, Science.

[288]  J. Dunne,et al.  Climate Sensitivity of GFDL's CM4.0 , 2020, Journal of Advances in Modeling Earth Systems.

[289]  B. Santer,et al.  Sources of Intermodel Spread in the Lapse Rate and Water Vapor Feedbacks , 2018 .

[290]  Zhonghui Liu,et al.  A 12-Million-Year Temperature History of the Tropical Pacific Ocean , 2014, Science.

[291]  M. Weitzman,et al.  On Modeling and Interpreting the Economics of Catastrophic Climate Change , 2009, The Review of Economics and Statistics.

[292]  C. Bretherton Insights into low-latitude cloud feedbacks from high-resolution models , 2015, Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[293]  T. Andrews,et al.  The inconstancy of the transient climate response parameter under increasing CO2 , 2015, Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[294]  P. Ashwin,et al.  Lessons on Climate Sensitivity From Past Climate Changes , 2016, Current Climate Change Reports.

[295]  G. Roe,et al.  Why Is Climate Sensitivity So Unpredictable? , 2007, Science.

[296]  G. Hegerl,et al.  Impacts of the 1900–74 Increase in Anthropogenic Aerosol Emissions from North America and Europe on Eurasian Summer Climate , 2018, Journal of Climate.

[297]  G. Foster Seawater pH, pCO2 and [CO2−3] variations in the Caribbean Sea over the last 130 kyr: A boron isotope and B/Ca study of planktic foraminifera , 2008 .

[298]  J. Hansen,et al.  Climate sensitivity, sea level and atmospheric carbon dioxide , 2012, Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[299]  S. Bony,et al.  Interpretation of the positive low-cloud feedback predicted by a climate model under global warming , 2013, Climate Dynamics.

[300]  G. Myhre,et al.  Radiative forcing of carbon dioxide, methane, and nitrous oxide: A significant revision of the methane radiative forcing , 2016 .

[301]  T. Storelvmo,et al.  On the relationships among cloud cover, mixed‐phase partitioning, and planetary albedo in GCMs , 2016 .

[302]  Masaki Satoh,et al.  High Cloud Responses to Global Warming Simulated by Two Different Cloud Microphysics Schemes Implemented in the Nonhydrostatic Icosahedral Atmospheric Model (NICAM) , 2016 .

[303]  N. Mahowald,et al.  The PMIP4 Contribution to CMIP6-Part 4: Scientific Objectives and Experimental Design of the PMIP4-CMIP6 Last Glacial Maximum Experiments and PMIP4 Sensitivity Experiments , 2017 .

[304]  Bruce A. Wielicki,et al.  Statistical Analyses of Satellite Cloud Object Data from CERES. Part I: Methodology and Preliminary Results of the 1998 El Niño/2000 La Niña , 2005 .

[305]  B. Soden,et al.  An Assessment of Climate Feedbacks in Coupled Ocean–Atmosphere Models , 2006 .

[306]  W. Ingram A very simple model for the water vapour feedback on climate change , 2010 .

[307]  B. Boer,et al.  State dependency of the equilibrium climate sensitivity during the last 5 million years , 2015 .

[308]  Donald K. Perovich,et al.  Radiative forcing and albedo feedback from the Northern Hemisphere cryosphere between 1979 and 2008 , 2011 .

[309]  M. Kawamiya,et al.  Effect of high dust amount on surface temperature during the Last Glacial Maximum: a modelling study using MIROC-ESM , 2018, Climate of the Past.

[310]  Christopher S. Bretherton,et al.  Modeling Tropical Precipitation in a Single Column , 2000 .

[311]  Reto Knutti,et al.  The equilibrium sensitivity of the Earth's temperature to radiation changes , 2008 .

[312]  J. Karlsson,et al.  Consequences of poor representation of Arctic sea‐ice albedo and cloud‐radiation interactions in the CMIP5 model ensemble , 2013 .

[313]  T. Mauritsen Global warming: Clouds cooled the Earth , 2016 .

[314]  J. Gregory,et al.  Global reconstruction of historical ocean heat storage and transport , 2019, Proceedings of the National Academy of Sciences.

[315]  Bayesian deconstruction of climate sensitivity estimates using simple models: implicit priors, and the confusion of the inverse , 2019 .

[316]  Reto Knutti,et al.  Feedbacks, climate sensitivity and the limits of linear models , 2015, Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[317]  M. Ishii,et al.  Accuracy of Global Upper Ocean Heat Content Estimation Expected from Present Observational Data Sets , 2017 .

[318]  P. Watson,et al.  Australian sea levels—Trends, regional variability and influencing factors , 2014 .

[319]  B. Stevens,et al.  A 1D RCE Study of Factors Affecting the Tropical Tropopause Layer and Surface Climate , 2019, Journal of Climate.

[320]  N. Mahowald,et al.  Improved dust representation in the Community Atmosphere Model , 2012 .

[321]  T. Andrews,et al.  Evaluating adjusted forcing and model spread for historical and future scenarios in the CMIP5 generation of climate models , 2013 .

[322]  C. Buck,et al.  IntCal13 and Marine13 Radiocarbon Age Calibration Curves 0–50,000 Years cal BP , 2013, Radiocarbon.

[323]  D. Fillmore,et al.  Climate response and radiative forcing from mineral aerosols during the last glacial maximum, pre‐industrial, current and doubled‐carbon dioxide climates , 2006 .

[324]  R. F. Strickler,et al.  Thermal Equilibrium of the Atmosphere with a Convective Adjustment , 1964 .

[325]  H. Shiogama,et al.  Rapid Adjustments of Cloud and Hydrological Cycle to Increasing CO2: a Review , 2015, Current Climate Change Reports.

[326]  John Abraham,et al.  Improved estimates of ocean heat content from 1960 to 2015 , 2017, Science Advances.

[327]  T. Stocker,et al.  Response of the AMOC to reduced solar radiation – the modulating role of atmospheric chemistry , 2016 .

[328]  S. Klein,et al.  On the spread of changes in marine low cloud cover in climate model simulations of the 21st century , 2014, Climate Dynamics.

[329]  L. Polvani,et al.  Reduction of Climate Sensitivity to Solar Forcing due to Stratospheric Ozone Feedback , 2016 .

[330]  J. Hansen,et al.  Climate Impact of Increasing Atmospheric Carbon Dioxide , 1981, Science.

[331]  S. Klein,et al.  Low‐cloud optical depth feedback in climate models , 2013 .

[332]  T. Storelvmo,et al.  Observational constraints on mixed-phase clouds imply higher climate sensitivity , 2015, Science.

[333]  C. Bretherton,et al.  Mechanisms of marine low cloud sensitivity to idealized climate perturbations: A single‐LES exploration extending the CGILS cases , 2013 .

[334]  Cecilia M. Bitz,et al.  Time-Varying Climate Sensitivity from Regional Feedbacks , 2012 .

[335]  M. Yoshimori,et al.  Can the Last Glacial Maximum constrain climate sensitivity? , 2012 .

[336]  A. Hall,et al.  Why Do Models Produce Spread in Snow Albedo Feedback? , 2018, Geophysical Research Letters.

[337]  Andrei P. Sokolov,et al.  Quantifying Uncertainties in Climate System Properties with the Use of Recent Climate Observations , 2002, Science.

[338]  T. Mauritsen,et al.  Forcing and feedback in the MPI‐ESM‐LR coupled model under abruptly quadrupled CO2 , 2013 .

[339]  G. Vecchi,et al.  Climate Response of the Equatorial Pacific to Global Warming , 2009 .

[340]  T. Wong,et al.  Cloud and radiative characteristics of tropical deep convective systems in extended cloud objects from CERES observations. , 2009 .

[341]  M. Webb,et al.  How accurately can the climate sensitivity to CO2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\hbox {CO}_{2}$$\end{ , 2019, Climate Dynamics.

[342]  S. Raper,et al.  An Observationally Based Estimate of the Climate Sensitivity , 2002 .

[343]  S. Klein,et al.  Drivers of the Low-Cloud Response to Poleward Jet Shifts in the North Pacific in Observations and Models , 2018, Journal of Climate.

[344]  K. Trenberth,et al.  A Less Cloudy Future: The Role of Subtropical Subsidence in Climate Sensitivity , 2012, Science.

[345]  T. Shepherd,et al.  Fast and Slow Components of the Extratropical Atmospheric Circulation Response to CO2 Forcing , 2017 .

[346]  K. Taylor,et al.  Quantifying the Sources of Intermodel Spread in Equilibrium Climate Sensitivity , 2016 .

[347]  K. Taylor,et al.  Causes of Higher Climate Sensitivity in CMIP6 Models , 2020, Geophysical Research Letters.

[348]  J. Fuglestvedt,et al.  Global warming potentials and radiative efficiencies of halocarbons and related compounds: A comprehensive review , 2013 .

[349]  F. Joos,et al.  Atmospheric CO2 response to volcanic eruptions: The role of ENSO, season, and variability , 2013 .

[350]  M. Webb,et al.  Origins of differences in climate sensitivity, forcing and feedback in climate models , 2013, Climate Dynamics.

[351]  C. Bitz,et al.  Conditions leading to the unprecedented low Antarctic sea ice extent during the 2016 austral spring season , 2017 .

[352]  Ron Kwok,et al.  Uncertainty in modeled Arctic sea ice volume , 2011 .

[353]  G. Hegerl,et al.  Importance of the Pre-Industrial Baseline in Determining the Likelihood of Exceeding the Paris Limits , 2017, Nature climate change.

[354]  L. Polvani,et al.  Reduced Southern Hemispheric circulation response to quadrupled CO2 due to stratospheric ozone feedback , 2017 .

[355]  B. Stevens,et al.  Marine Boundary Layer Cloud Feedbacks in a Constant Relative Humidity Atmosphere , 2012 .

[356]  C. Zhai,et al.  Long‐term cloud change imprinted in seasonal cloud variation: More evidence of high climate sensitivity , 2015 .

[357]  D. Hartmann,et al.  La Niña–like Mean-State Response to Global Warming and Potential Oceanic Roles , 2017 .

[358]  Norman G. Loeb,et al.  Improving estimates of Earth's energy imbalance , 2016 .

[359]  Eelco J. Rohling,et al.  Making sense of palaeoclimate sensitivity , 2012, Nature.

[360]  Benjamin M. Sanderson,et al.  Climate Feedbacks in CCSM3 under Changing CO2 Forcing. Part I: Adapting the Linear Radiative Kernel Technique to Feedback Calculations for a Broad Range of Forcings , 2012 .

[361]  D. Lunt,et al.  Climate Sensitivity on Geological Timescales Controlled by Nonlinear Feedbacks and Ocean Circulation , 2019, Geophysical Research Letters.

[362]  K. Lambeck,et al.  Constraints on the Late Saalian to early Middle Weichselian ice sheet of Eurasia from field data and rebound modelling , 2006 .

[363]  B. Soden,et al.  The Sensitivity of the Tropical-Mean Radiation Budget , 2005 .

[364]  J. Annan,et al.  Using multiple observationally‐based constraints to estimate climate sensitivity , 2006 .

[365]  Peter John Huybers,et al.  A Bayesian Algorithm for Reconstructing Climate Anomalies in Space and Time. Part I: Development and Applications to Paleoclimate Reconstruction Problems , 2010 .

[366]  Norman G. Loeb,et al.  Changes in Earth’s Energy Budget during and after the “Pause” in Global Warming: An Observational Perspective , 2018, Climate.

[367]  I. Held,et al.  Using Relative Humidity as a State Variable in Climate Feedback Analysis , 2012 .

[368]  Self-Aggregation of Deep Convection and its Implications for Climate , 2019, Current Climate Change Reports.

[369]  Kerry A. Emanuel,et al.  Rotating radiative‐convective equilibrium simulated by a cloud‐resolving model , 2013 .

[370]  K. Lambeck,et al.  The Scandinavian Ice Sheet: from MIS 4 to the end of the Last Glacial Maximum , 2010 .

[371]  G. Boer,et al.  The roles of radiation and dynamical processes in the El Niño-like response to global warming , 2002 .

[372]  V. Ramaswamy,et al.  Uncertainty in Model Climate Sensitivity Traced to Representations of Cumulus Precipitation Microphysics , 2016 .

[373]  Q. Hua,et al.  SHCal13 Southern Hemisphere Calibration, 0–50,000 Years cal BP , 2013, Radiocarbon.

[374]  B. Santer,et al.  Statistical significance of climate sensitivity predictors obtained by data mining , 2014 .

[375]  M. Budyko The effect of solar radiation variations on the climate of the Earth , 1969 .

[376]  Tammy M. Weckwerth,et al.  Tropospheric water vapor, convection, and climate , 2010 .

[377]  S. Xie,et al.  Robust cloud feedback over tropical land in a warming climate , 2016 .

[378]  S. Sherwood,et al.  A Matter of Humidity , 2009, Science.

[379]  M. Webb,et al.  Quantification of modelling uncertainties in a large ensemble of climate change simulations , 2004, Nature.

[380]  J. Annan Recent Developments in Bayesian Estimation of Climate Sensitivity , 2015, Current Climate Change Reports.

[381]  H. Masunaga,et al.  Revisiting the iris effect of tropical cirrus clouds with TRMM and A‐Train satellite data , 2017 .

[382]  J. Webster,et al.  Differences between the last two glacial maxima and implications for ice-sheet, δ18O, and sea-level reconstructions , 2017 .

[383]  Harshvardhan,et al.  Thermodynamic constraint on the cloud liquid water feedback in climate models , 1987 .

[384]  Masahiro Watanabe,et al.  Tropospheric adjustment to increasing CO2: its timescale and the role of land–sea contrast , 2013, Climate Dynamics.

[385]  Chris E. Forest,et al.  Sensitivity of distributions of climate system properties to the surface temperature dataset , 2011 .

[386]  S. Rahmstorf,et al.  Sea-level rise due to polar ice-sheet mass loss during past warm periods , 2015, Science.

[387]  R. Colman,et al.  Surface albedo feedbacks from climate variability and change , 2013 .

[388]  Camille Li,et al.  The key role of topography in altering North Atlantic atmospheric circulation during the last glacial period , 2011 .

[389]  Eric Rignot,et al.  Mass balance of the Antarctic Ice Sheet from 1992 to 2017 , 2018, Nature.

[390]  Angeline G. Pendergrass,et al.  Do Southern Ocean Cloud Feedbacks Matter for 21st Century Warming? , 2017 .

[391]  F. Brient Reducing Uncertainties in Climate Projections with Emergent Constraints: Concepts, Examples and Prospects , 2019, Advances in Atmospheric Sciences.

[392]  A. Hall,et al.  On the persistent spread in snow-albedo feedback , 2012, Climate Dynamics.

[393]  Graeme L. Stephens,et al.  A Bayesian approach to microwave precipitation profile retrieval , 1995 .

[394]  M. Huber,et al.  State-dependent climate sensitivity in past warm climates and its implications for future climate projections , 2013, Proceedings of the National Academy of Sciences.

[395]  Christopher J. Smith,et al.  Past warming trend constrains future warming in CMIP6 models , 2020, Science Advances.

[396]  Robert Pincus,et al.  Radiative flux and forcing parameterization error in aerosol‐free clear skies , 2015, Geophysical research letters.

[397]  Dennis L. Hartmann,et al.  Testing the Fixed Anvil Temperature Hypothesis in a Cloud-Resolving Model , 2007 .

[398]  Annette Osprey,et al.  A large ozone-circulation feedback and its implications for global warming assessments , 2014, Nature climate change.

[399]  G. Tselioudis,et al.  Changes in extratropical storm track cloudiness 1983–2008: observational support for a poleward shift , 2011, Climate Dynamics.

[400]  M. Zelinka,et al.  CLIMATE AND CLIMATE CHANGE | Climate Feedbacks , 2015 .

[401]  Shunlin Liang,et al.  Assessment of Sea Ice Albedo Radiative Forcing and Feedback over the Northern Hemisphere from 1982 to 2009 Using Satellite and Reanalysis Data , 2015 .

[402]  Daniel J. Lunt,et al.  Pliocene Model Intercomparison Project (PlioMIP): experimental design and boundary conditions (Experiment 2) , 2009 .

[403]  J. Kay,et al.  Processes controlling Southern Ocean shortwave climate feedbacks in CESM , 2014 .

[404]  Elizabeth C. Kent,et al.  Correcting datasets leads to more homogeneous early-twentieth-century sea surface warming , 2019, Nature.

[405]  Christopher J. Smith,et al.  Latest climate models confirm need for urgent mitigation , 2019, Nature Climate Change.

[406]  C. Bretherton,et al.  Variability in modeled cloud feedback tied to differences in the climatological spatial pattern of clouds , 2018, Climate Dynamics.

[407]  R. Seager,et al.  An Ocean Dynamical Thermostat , 1996 .

[408]  P. Valdes,et al.  Last glacial maximum radiative forcing from mineral dust aerosols in an Earth system model , 2015 .

[409]  N. Mahowald,et al.  Climate Sensitivity Estimated from Temperature Reconstructions of the Last Glacial Maximum , 2011, Science.

[410]  G. Meehl,et al.  Constraining Climate Sensitivity from the Seasonal Cycle in Surface Temperature , 2006 .

[411]  S. Klein,et al.  Constraining the low‐cloud optical depth feedback at middle and high latitudes using satellite observations , 2016 .

[412]  G. Kuhn,et al.  Obliquity-paced Pliocene West Antarctic ice sheet oscillations , 2009, Nature.

[413]  G. Schmidt,et al.  Atmospheric composition, radiative forcing, and climate change as a consequence of a massive methane release from gas hydrates , 2003 .

[414]  S. Fueglistaler Observational Evidence for Two Modes of Coupling Between Sea Surface Temperatures, Tropospheric Temperature Profile, and Shortwave Cloud Radiative Effect in the Tropics , 2019, Geophysical Research Letters.

[415]  R. Colman,et al.  Limits to global and Australian temperature change this century based on expert judgment of climate sensitivity , 2017, Climate Dynamics.

[416]  Tobias Friedrich,et al.  Nonlinear climate sensitivity and its implications for future greenhouse warming , 2016, Science Advances.

[417]  J. Kiehl On the Observed Near Cancellation between Longwave and Shortwave Cloud Forcing in Tropical Regions , 1994 .

[418]  Warren M. Washington,et al.  El Niño-like climate change in a model with increased atmospheric CO2 concentrations , 1996, Nature.

[419]  D. F. Young,et al.  Examination of New CERES Data for Evidence of Tropical Iris Feedback , 2002 .

[420]  C. Bretherton,et al.  Low cloud reduction in a greenhouse‐warmed climate: Results from Lagrangian LES of a subtropical marine cloudiness transition , 2014 .

[421]  M. Watanabe,et al.  Pacific trade winds accelerated by aerosol forcing over the past two decades , 2016 .

[422]  Jeffery R. Scott,et al.  The ocean's role in polar climate change: asymmetric Arctic and Antarctic responses to greenhouse gas and ozone forcing , 2014, Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[423]  K. Lawrence,et al.  Tightly linked zonal and meridional sea surface temperature gradients over the past five million years , 2015 .

[424]  D. Battisti,et al.  Attributing Historical and Future Evolution of Radiative Feedbacks to Regional Warming Patterns using a Green’s Function Approach: The Preeminence of the Western Pacific , 2019, Journal of Climate.

[425]  P. Pearson,et al.  Constraining the evolution of Neogene ocean carbonate chemistry using the boron isotope pH proxy , 2018, Earth and Planetary Science Letters.

[426]  G. Hegerl,et al.  Last phase of the Little Ice Age forced by volcanic eruptions , 2019, Nature Geoscience.

[427]  P. Huybers,et al.  The Little Ice Age and 20th-century deep Pacific cooling , 2019, Science.

[428]  T. Andrews,et al.  Variation in climate sensitivity and feedback parameters during the historical period , 2016 .

[429]  I. Montañez,et al.  The Late Paleozoic Ice Age: An Evolving Paradigm , 2013 .

[430]  M. Webb,et al.  Global‐mean radiative feedbacks and forcing in atmosphere‐only and coupled atmosphere‐ocean climate change experiments , 2014 .

[431]  Kevin Cowtan,et al.  Reconciled climate response estimates from climate models and the energy budget of Earth , 2016 .

[432]  S. Bony,et al.  Observed Relationships between Cloud Vertical Structure and Convective Aggregation over Tropical Ocean , 2017 .

[433]  T. Andrews,et al.  What Climate Sensitivity Index Is Most Useful for Projections? , 2018 .

[434]  H. Dijkstra,et al.  On the state dependency of fast feedback processes in (paleo) climate sensitivity , 2014, 1403.5391.

[435]  P. Jones,et al.  Quantifying uncertainties in global and regional temperature change using an ensemble of observational estimates: The HadCRUT4 data set , 2012 .

[436]  L. K. Gohar,et al.  Radiative forcing by well-mixed greenhouse gases: Estimates from climate models in the Intergovernme , 2006 .

[437]  B. Medeiros,et al.  Understanding the Varied Influence of Midlatitude Jet Position on Clouds and Cloud Radiative Effects in Observations and Global Climate Models , 2016 .

[438]  S. Klein,et al.  Positive tropical marine low‐cloud cover feedback inferred from cloud‐controlling factors , 2015 .

[439]  D. Pollard,et al.  CO2, climate, and vegetation feedbacks at the Last Glacial Maximum , 1999 .

[440]  S. Bony,et al.  Thermodynamic control of anvil cloud amount , 2016, Proceedings of the National Academy of Sciences.

[441]  Y. Tsushima,et al.  Relative humidity changes in a warmer climate , 2010 .

[442]  N. Shackleton,et al.  Phase relationships between millennial‐scale events 64,000–24,000 years ago , 2000 .

[443]  M. Webb,et al.  The Dependence of Radiative Forcing and Feedback on Evolving Patterns of Surface Temperature Change in Climate Models , 2015 .

[444]  L. Polvani,et al.  Stratospheric water vapor: an important climate feedback , 2018, Climate Dynamics.

[445]  S. Klein,et al.  Emergent Constraints for Cloud Feedbacks , 2015, Current Climate Change Reports.

[446]  Q. Fu,et al.  Tropical Convection and the Energy Balance at the Top of the Atmosphere , 2001 .

[447]  S. Bony,et al.  Spread in model climate sensitivity traced to atmospheric convective mixing , 2014, Nature.

[448]  Inez Y. Fung,et al.  Climate Sensitivity: Analysis of Feedback Mechanisms , 2013 .

[449]  Toshihiko Takemura,et al.  A simulation of the global distribution and radiative forcing of soil dust aerosols at the Last Glacial Maximum , 2009 .

[450]  M. Webb,et al.  Fixed Anvil Temperature Feedback: Positive, Zero, or Negative? , 2020, Journal of Climate.

[451]  F. Joos,et al.  What caused Earths temperature variations during the last 800,000 years? Data-based evidences on radiative forcing and constraints on climate sensitivity , 2009 .

[452]  C. Ramsey,et al.  Sea-level variability over five glacial cycles , 2014, Nature Communications.

[453]  D. S. Ward,et al.  Integrative analysis of desert dust size and abundance suggests less dust climate cooling. , 2017, Nature geoscience.

[454]  G. Hegerl,et al.  Observational constraints on the effective climate sensitivity from the historical period , 2020, Environmental Research Letters.

[455]  Peter Braesicke,et al.  On the role of ozone feedback in the ENSO amplitude response under global warming , 2017, Geophysical research letters.

[456]  R. Wood,et al.  The Change in Low Cloud Cover in a Warmed Climate Inferred from AIRS, MODIS, and ERA-Interim , 2017 .

[457]  M. Yoshimori,et al.  Dependency of Feedbacks on Forcing and Climate State in Physics Parameter Ensembles , 2011 .

[458]  Zhonghui Liu,et al.  High Earth-system climate sensitivity determined from Pliocene carbon dioxide concentrations , 2010 .

[459]  Raymond T. Pierrehumbert,et al.  Feedback temperature dependence determines the risk of high warming , 2015 .

[460]  Jeffery R. Scott,et al.  The ocean’s role in the transient response of climate to abrupt greenhouse gas forcing , 2015, Climate Dynamics.

[461]  S. Sherwood,et al.  Processes Responsible for Cloud Feedback , 2016, Current Climate Change Reports.

[462]  E. Rohling,et al.  Relationship between sea level and climate forcing by CO2 on geological timescales , 2013, Proceedings of the National Academy of Sciences.

[463]  G. Hegerl,et al.  Small influence of solar variability on climate over the past millennium , 2014 .

[464]  T. Andrews,et al.  Understanding Rapid Adjustments to Diverse Forcing Agents , 2018, Geophysical research letters.

[465]  M. Siddall,et al.  Sea surface and high-latitude temperature sensitivity to radiative forcing of climate over several glacial cycles , 2011 .

[466]  David R. Doelling,et al.  Toward Optimal Closure of the Earth's Top-of-Atmosphere Radiation Budget , 2009 .

[467]  A. P. Siebesma,et al.  Boundary Layer Clouds and Convection over Subtropical Oceans in our Current and in a Warmer Climate , 2019, Current Climate Change Reports.

[468]  T. Andrews,et al.  Recommendations for diagnosing effective radiative forcing from climate models for CMIP6 , 2016 .

[469]  S. Klein,et al.  On the Emergent Constraints of Climate Sensitivity , 2018 .

[470]  P. Pearson,et al.  Very large release of mostly volcanic carbon during the Paleocene-Eocene Thermal Maximum , 2017, Nature.

[471]  X. Yue,et al.  Simulation of the Direct Radiative Effect of Mineral Dust Aerosol on the Climate at the Last Glacial Maximum , 2011 .

[472]  Jonathan M. Gregory,et al.  Mechanisms for the land/sea warming contrast exhibited by simulations of climate change , 2008 .

[473]  N. Eckert,et al.  Global glacier mass changes and their contributions to sea-level rise from 1961 to 2016 , 2019, Nature.

[474]  S. Bony,et al.  Prospects for narrowing bounds on Earth's equilibrium climate sensitivity , 2016, Earth's future.

[475]  B. Hönisch,et al.  Surface ocean pH response to variations in pCO2 through two full glacial cycles , 2005 .

[476]  M. Kageyama,et al.  Shortwave forcing and feedbacks in Last Glacial Maximum and Mid-Holocene PMIP3 simulations , 2015, Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[477]  Stephen A. Klein,et al.  Progressing emergent constraints on future climate change , 2019, Nature Climate Change.

[478]  B. Rose,et al.  The Effects of Ocean Heat Uptake on Transient Climate Sensitivity , 2016, Current Climate Change Reports.

[479]  S. Klein,et al.  Analyzing the dependence of global cloud feedback on the spatial pattern of sea surface temperature change with a Green's function approach , 2017 .

[480]  G. Mann,et al.  The Climatic Importance of Uncertainties in Regional Aerosol–Cloud Radiative Forcings over Recent Decades , 2015 .

[481]  G. Schmidt,et al.  Internal Variability and Disequilibrium Confound Estimates of Climate Sensitivity From Observations , 2018 .

[482]  Veronika Eyring,et al.  Overview of the Coupled Model Intercomparison Project Phase 6 (CMIP6) experimental design and organization , 2015 .

[483]  M. Zelinka,et al.  An Analysis of the Short-Term Cloud Feedback Using MODIS Data , 2013 .

[484]  N. Loeb,et al.  Understanding Climate Feedbacks and Sensitivity Using Observations of Earth’s Energy Budget , 2016, Current Climate Change Reports.

[485]  Frédéric Hourdin,et al.  Role of clouds and land‐atmosphere coupling in midlatitude continental summer warm biases and climate change amplification in CMIP5 simulations , 2014 .

[486]  Peter U. Clark,et al.  Ice sheets and sea level of the Last Glacial Maximum , 2001 .

[487]  Stefan Reimann,et al.  Historical greenhouse gas concentrations for climate modelling (CMIP6) , 2016 .

[488]  Jeffrey T. Kiehl,et al.  Twentieth century climate model response and climate sensitivity , 2007 .

[489]  E. M. Volodin Relation between temperature sensitivity to doubled carbon dioxide and the distribution of clouds in current climate models , 2008 .

[490]  S. Klein,et al.  Insights from a refined decomposition of cloud feedbacks , 2016 .

[491]  R. Colman,et al.  On the relative strength of radiative feedbacks under climate variability and change , 2017, Climate Dynamics.

[492]  A. Hall,et al.  An emergent constraint on future Arctic sea-ice albedo feedback , 2019, Nature Climate Change.

[493]  J. Gregory,et al.  Relationship of tropospheric stability to climate sensitivity and Earth’s observed radiation budget , 2017, Proceedings of the National Academy of Sciences.

[494]  Yongyun Hu,et al.  Is there a stratospheric radiative feedback in global warming simulations? , 2015, Climate Dynamics.

[495]  S. Solomon,et al.  Observational evidence of strengthening of the Brewer‐Dobson circulation since 1980 , 2015 .

[496]  Paul J. Valdes,et al.  Earth system sensitivity inferred from Pliocene modelling and data , 2010 .

[497]  B. Otto‐Bliesner,et al.  The Pliocene Model Intercomparison Project (PlioMIP) Phase 2: scientific objectives and experimental design , 2016 .

[498]  Olivier Geoffroy,et al.  Transient Climate Response in a Two-Layer Energy-Balance Model. Part II: Representation of the Efficacy of Deep-Ocean Heat Uptake and Validation for CMIP5 AOGCMs , 2013 .