Consistent and asymptotically normal estimators for cyclically time-dependent linear models

We consider a general class of time series linear models where parameters switch according to a known fixed calendar. These parameters are estimated by means of quasi-generalized least squares estimators. conditions for strong consistency and asymptotic normality are given. Applications to cyclical ARMA models with non constant periods are considered.

[1]  D. Tjøstheim,et al.  LEAST SQUARES ESTIMATES AND ORDER DETERMINATION PROCEDURES FOR AUTOREGRESSIVE PROCESSES WITH A TIME DEPENDENT VARIANCE , 1985 .

[2]  A note on the properties of some nonstationary ARMA processes , 1987 .

[3]  G. C. Tiao,et al.  Hidden Periodic Autoregressive-Moving Average Models in Time Series Data, , 1980 .

[4]  Philippe Loubaton,et al.  An extension problem for discrete-time almost periodically correlated stochastic processes , 2000 .

[5]  Dominique Dehay,et al.  RANDOM SAMPLING ESTIMATION FOR ALMOST PERIODICALLY CORRELATED PROCESSES , 1996 .

[6]  A. V. Vecchia PERIODIC AUTOREGRESSIVE‐MOVING AVERAGE (PARMA) MODELING WITH APPLICATIONS TO WATER RESOURCES , 1985 .

[7]  Marc Hallin,et al.  NON-STATIONARY q-DEPENDENT PROCESSES AND TIME-VARYING MOVING-AVERAGE MODELS: INVERTIBILITY PROPERTIES AND THE FORECASTING PROBLEM , 1986 .

[8]  Yoshihiro Yajima,et al.  On an autoregressive model with time-dependent coefficients , 1986 .

[9]  D. Cochrane,et al.  Application of Least Squares Regression to Relationships Containing Auto-Correlated Error Terms , 1949 .

[10]  W. Fuller,et al.  Distribution of the Estimators for Autoregressive Time Series with a Unit Root , 1979 .

[11]  D. Tjøstheim,et al.  AUTOREGRESSIVE PROCESSES WITH A TIME DEPENDENT VARIANCE , 1982 .

[12]  Patrick Billingsley,et al.  Probability and Measure. , 1986 .

[13]  C. C. Heyde,et al.  Quasi-Likelihood and Optimal Estimation, Correspondent Paper , 1987 .

[14]  Robert Lund,et al.  Recursive Prediction and Likelihood Evaluation for Periodic ARMA Models , 2000 .

[15]  E. G. Gladyshev Periodically and Almost-Periodically Correlated Random Processes with a Continuous Time Parameter , 1963 .

[16]  James D. Hamilton Time Series Analysis , 1994 .

[17]  A. Makagon,et al.  Weak law of large numbers for almost periodically correlated processes , 1996 .

[18]  D. Szynal,et al.  On a characterization of optimal predictors for nonstationary ARMA processes , 1991 .

[19]  Robert Lund,et al.  Large Sample Properties of Parameter Estimates for Periodic ARMA Models , 2001 .

[20]  Richard A. Davis,et al.  Time Series: Theory and Methods , 2013 .

[21]  Antoine Chevreuil,et al.  An Extension Problem For Discrete-Time Periodically Correlated Stochastic Processes , 2001 .

[22]  Jan G. De Gooijer,et al.  On threshold moving‐average models , 1998 .

[23]  Aldo V. Vecchia,et al.  ASYMPTOTIC RESULTS FOR PERIODIC AUTOREGRESSIVE MOVING‐AVERAGE PROCESSES , 1993 .

[24]  R. Dahlhaus Fitting time series models to nonstationary processes , 1997 .

[25]  Graham C. Goodwin,et al.  PARAMETER ESTIMATION FOR PERIODIC ARMA MODELS , 1995 .

[26]  Marc Hallin,et al.  On the invertibility of periodic moving-average models , 1994 .

[27]  Christian Gourieroux,et al.  Statistics and econometric models , 1995 .

[28]  John S. White THE LIMITING DISTRIBUTION OF THE SERIAL CORRELATION COEFFICIENT IN THE EXPLOSIVE CASE , 1958 .