Random Structures and Algorithms

We provide an introduction to the analysis of random combinatorial structures and some of the associated computational problems. Mathematics Subject Classification (2010). Primary 05C80; Secondary 68Q87.

[1]  Endre Szemerédi,et al.  Many hard examples for resolution , 1988, JACM.

[2]  P. Erdos,et al.  On the evolution of random graphs , 1984 .

[3]  Svante Janson,et al.  One, Two and Three Times log n/n for Paths in a Complete Graph with Random Weights , 1999, Combinatorics, Probability and Computing.

[4]  Alan M. Frieze,et al.  On the Length of a Random Minimum Spanning Tree , 2012, Combinatorics, Probability and Computing.

[5]  Amin Coja-Oghlan,et al.  Upper-Bounding the k-Colorability Threshold by Counting Covers , 2013, Electron. J. Comb..

[6]  Colin McDiarmid,et al.  Topics in Chromatic Graph Theory: Colouring random graphs , 2015 .

[7]  Tomasz Luczak,et al.  A sharp threshold for collapse of the random triangular group , 2014 .

[8]  Charalambos A. Charalambides,et al.  Enumerative combinatorics , 2018, SIGA.

[9]  Tomasz Luczak A note on the sharp concentration of the chromatic number of random graphs , 1991, Comb..

[10]  M. Held,et al.  A dynamic programming approach to sequencing problems , 1962, ACM National Meeting.

[11]  Stephen A. Cook,et al.  The complexity of theorem-proving procedures , 1971, STOC.

[12]  A. RÉNY,et al.  ON THE EXISTENCE OF A FACTOR OF DEGREE ONE OF A CONNECTED RANDOM GRAPH , 2004 .

[13]  Alan M. Frieze,et al.  Finding a maximum matching in a sparse random graph in O(n) expected time , 2008, JACM.

[14]  B. Bollobás Combinatorics: Set Systems, Hypergraphs, Families of Vectors and Combinatorial Probability , 1986 .

[15]  Alan M. Frieze,et al.  Random graphs , 2006, SODA '06.

[16]  P. Erdos,et al.  On the existence of a factor of degree one of a connected random graph , 1966 .

[17]  R. Meshulam,et al.  Homological connectivity of random k-dimensional complexes , 2009, Random Struct. Algorithms.

[18]  E. Friedgut,et al.  Sharp thresholds of graph properties, and the -sat problem , 1999 .

[19]  L. Pósa,et al.  Hamiltonian circuits in random graphs , 1976, Discret. Math..

[20]  Richard M. Karp,et al.  A Patching Algorithm for the Nonsymmetric Traveling-Salesman Problem , 1979, SIAM J. Comput..

[21]  Karthekeyan Chandrasekaran,et al.  Integer Feasibility of Random Polytopes , 2011 .

[22]  J. Beardwood,et al.  The shortest path through many points , 1959, Mathematical Proceedings of the Cambridge Philosophical Society.

[23]  Alan M. Frieze,et al.  Maximum matchings in sparse random graphs: Karp-Sipser revisited , 1998, Random Struct. Algorithms.

[24]  Béla Bollobás Complete Matchings in Random Subgraphs on the Cube , 1990, Random Struct. Algorithms.

[25]  Alan M. Frieze,et al.  On the value of a random minimum spanning tree problem , 1985, Discret. Appl. Math..

[26]  Yann Ollivier Sharp phase transition theorems for hyperbolicity of random groups , 2003 .

[27]  Adrian Vetta,et al.  Nash equilibria in random games , 2007 .

[28]  Alan M. Frieze,et al.  On the number of hamilton cycles in a random graph , 1989, J. Graph Theory.

[29]  Ehud Friedgut,et al.  A Sharp Threshold for k-Colorability , 1999, Random Struct. Algorithms.

[30]  Benny Sudakov,et al.  Local resilience of graphs , 2007, Random Struct. Algorithms.

[31]  Matthew Kahle Topology of random simplicial complexes: a survey , 2013, 1301.7165.

[32]  Alexandr V. Kostochka,et al.  On independent sets in hypergraphs , 2011, Random Struct. Algorithms.

[33]  Béla Bollobás,et al.  Mathematical results on scale‐free random graphs , 2005 .

[34]  Alan M. Frieze,et al.  On a greedy 2‐matching algorithm and Hamilton cycles in random graphs with minimum degree at least three , 2011, Random Struct. Algorithms.

[35]  Ralph L. Disney,et al.  Applied Probability— Computer Science: The Interface , 1982, Progress in Computer Science.

[36]  Richard M. Karp,et al.  Maximum Matchings in Sparse Random Graphs , 1981, FOCS 1981.

[37]  Amin Coja-Oghlan A Better Algorithm for Random k-SAT , 2009, ICALP.

[38]  Alan M. Frieze,et al.  Random Minimum Length Spanning Trees in Regular Graphs , 1998, Comb..

[39]  Assaf Naor,et al.  The two possible values of the chromatic number of a random graph , 2004, STOC '04.

[40]  B. Bollobás The evolution of random graphs , 1984 .

[41]  Wojciech Samotij,et al.  Optimal Packings of Hamilton Cycles in Sparse Random Graphs , 2011, SIAM J. Discret. Math..

[42]  WigdersonAvi,et al.  Short proofs are narrowresolution made simple , 2001 .

[43]  V. Rödl,et al.  Threshold functions for Ramsey properties , 1995 .

[44]  Tom Bohman,et al.  Hamilton cycles in 3-out , 2009 .

[45]  A. Frieze ON MATCHINGS AND HAMILTON CYCLES IN RANDOM GRAPHS , 1988 .

[46]  Svante Linusson,et al.  A proof of Parisi’s conjecture on the random assignment problem , 2003, math/0303214.

[47]  Amin Coja-Oghlan,et al.  The asymptotic k-SAT threshold , 2014, STOC.

[48]  D. Aldous Asymptotics in the random assignment problem , 1992 .

[49]  Philippe Flajolet,et al.  An introduction to the analysis of algorithms , 1995 .

[50]  Dimitris Achlioptas,et al.  THE THRESHOLD FOR RANDOM k-SAT IS 2k log 2 O(k) , 2004, FOCS 2004.

[51]  Wansoo T. Rhee,et al.  Martingale Inequalities and NP-Complete Problems , 1987, Math. Oper. Res..

[52]  Svante Janson,et al.  The Minimal Spanning Tree in a Complete Graph and a Functional Limit Theorem for Trees in a Random Graph , 1995, Random Struct. Algorithms.

[53]  Konstantinos Panagiotou,et al.  Going after the k-SAT threshold , 2013, STOC '13.

[54]  Ralph E. Gomory,et al.  Outline of an Algorithm for Integer Solutions to Linear Programs and An Algorithm for the Mixed Integer Problem , 2010, 50 Years of Integer Programming.

[55]  Johan Wästlund An easy proof of the $\zeta(2)$ limit in the random assignment problem , 2009 .

[56]  Stasys Jukna Extremal Combinatorics: with Applications in Computer Science by Stasys Jukna, Springer, 2001, xvii + 375 pp. 32.50; $49.95, ISBN 3540663134 , 2003 .

[57]  C.H. Papadimitriou,et al.  On selecting a satisfying truth assignment , 1991, [1991] Proceedings 32nd Annual Symposium of Foundations of Computer Science.

[58]  Johan Wästlund AN EASY PROOF OF THE ζ ( 2 ) LIMIT IN THE RANDOM ASSIGNMENT PROBLEM , 2006 .

[59]  Alan M. Frieze,et al.  Avoiding a giant component , 2001, Random Struct. Algorithms.

[60]  Béla Bollobás,et al.  The chromatic number of random graphs , 1988, Comb..

[61]  Alan M. Frieze,et al.  Random Regular Graphs of Non-Constant Degree: Connectivity and Hamiltonicity , 2002, Combinatorics, Probability and Computing.

[62]  Joel H. Spencer,et al.  Sharp concentration of the chromatic number on random graphsGn, p , 1987, Comb..

[63]  L. G. H. Cijan A polynomial algorithm in linear programming , 1979 .

[64]  Daniela Kühn,et al.  Edge‐disjoint Hamilton cycles in random graphs , 2011, Random Struct. Algorithms.

[65]  G. Parisi A Conjecture on random bipartite matching , 1998, cond-mat/9801176.

[66]  Amin Coja-Oghlan,et al.  Chasing the K-Colorability Threshold , 2013, 2013 IEEE 54th Annual Symposium on Foundations of Computer Science.

[67]  Leslie Hogben Applications to Computer Science , 2013 .

[68]  Martin E. Dyer,et al.  On patching algorithms for random asymmetric travelling salesman problems , 1990, Math. Program..

[69]  W. T. Gowers,et al.  Combinatorial theorems in sparse random sets , 2010, 1011.4310.

[70]  Alan M. Frieze,et al.  Logconcave random graphs , 2008, Electron. J. Comb..

[71]  Michael Krivelevich,et al.  On the Number of Hamilton Cycles in Sparse Random Graphs , 2013, SIAM J. Discret. Math..

[72]  René Beier,et al.  Random knapsack in expected polynomial time , 2003, STOC '03.

[73]  M. Schacht Extremal results for random discrete structures , 2016, 1603.00894.

[74]  Alan M. Frieze,et al.  On the Non-Planarity of a Random Subgraph , 2012, Combinatorics, Probability and Computing.

[75]  B. Bollobás,et al.  Cliques in random graphs , 1976, Mathematical Proceedings of the Cambridge Philosophical Society.

[76]  George S. Lueker,et al.  On the Average Difference between the Solutions to Linear and Integer Knapsack Problems , 1982 .

[77]  Benny Sudakov,et al.  Long paths and cycles in random subgraphs of graphs with large minimum degree , 2012, Random Struct. Algorithms.

[78]  Benny Sudakov,et al.  Local Resilience and Hamiltonicity Maker–Breaker Games in Random Regular Graphs , 2009, Combinatorics, Probability and Computing.

[79]  Van H. Vu,et al.  Concentration of Multivariate Polynomials and Its Applications , 2000, Comb..

[80]  Benny Sudakov,et al.  Random regular graphs of high degree , 2001, Random Struct. Algorithms.

[81]  David Aldous,et al.  The ζ(2) limit in the random assignment problem , 2000, Random Struct. Algorithms.

[82]  Graham A. Niblo,et al.  Asymptotic invariants of infinite groups , 1993 .

[83]  E. Upfal,et al.  On factors in random graphs , 1981 .

[84]  Eli Ben-Sasson,et al.  Short proofs are narrow—resolution made simple , 2001, JACM.

[85]  N. Biggs THE TRAVELING SALESMAN PROBLEM A Guided Tour of Combinatorial Optimization , 1986 .

[86]  Alan M. Frieze,et al.  An almost linear time algorithm for finding Hamilton cycles in sparse random graphs with minimum degree at least three , 2012, Random Struct. Algorithms.

[87]  Alan M. Frieze,et al.  A general model of web graphs , 2003, Random Struct. Algorithms.

[88]  Nicholas C. Wormald,et al.  Almost All Cubic Graphs Are Hamiltonian , 1992, Random Struct. Algorithms.

[89]  Oliver Riordan Long cycles in random subgraphs of graphs with large minimum degree , 2014, Random Struct. Algorithms.

[90]  Richard M. Karp,et al.  Probabilistic Analysis of Partitioning Algorithms for the Traveling-Salesman Problem in the Plane , 1977, Math. Oper. Res..

[91]  J. Edmonds Paths, Trees, and Flowers , 1965, Canadian Journal of Mathematics.

[92]  Nathan Linial,et al.  Homological Connectivity Of Random 2-Complexes , 2006, Comb..

[93]  David W. Walkup,et al.  On the Expected Value of a Random Assignment Problem , 1979, SIAM J. Comput..

[94]  Victor W. Marek,et al.  Book review: Combinatorics, Set Systems, Hypergraphs, Families of Vectors and Combinatorial Probability by B. Bollobas (Cambridge University Press) , 1987, SGAR.

[95]  J. Komlos,et al.  First Occurrence of Hamilton Cycles in Random Graphs , 1985 .

[96]  Yuval Peres,et al.  The threshold for random k-SAT is 2k (ln 2 - O(k)) , 2003, STOC '03.

[97]  Alan M. Frieze,et al.  The probabilistic relationship between the assignment and asymmetric traveling salesman problems , 2001, SODA '01.

[98]  L. Lovász Combinatorial problems and exercises , 1979 .

[99]  B. Bollobás,et al.  An algorithm for finding hamilton paths and cycles in random graphs , 1987 .

[100]  L. Khachiyan Polynomial algorithms in linear programming , 1980 .

[101]  Nicholas C. Wormald,et al.  Almost All Regular Graphs Are Hamiltonian , 1994, Random Struct. Algorithms.

[102]  Alan M. Frieze,et al.  Random k-SAT: The Limiting Probability for Satisfiability for Moderately Growing k , 2008, Electron. J. Comb..

[103]  Svante Janson,et al.  The Birth of the Giant Component , 1993, Random Struct. Algorithms.

[104]  Joel H. Spencer,et al.  The Bohman‐Frieze process near criticality , 2011, Random Struct. Algorithms.

[105]  Roman Vershynin,et al.  Beyond Hirsch Conjecture: Walks on Random Polytopes and Smoothed Complexity of the Simplex Method , 2006, 2006 47th Annual IEEE Symposium on Foundations of Computer Science (FOCS'06).

[106]  Richard M. Karp,et al.  Reducibility Among Combinatorial Problems , 1972, 50 Years of Integer Programming.

[107]  B. Prabhakar,et al.  Proofs of the Parisi and Coppersmith‐Sorkin random assignment conjectures , 2005 .

[108]  Shang-Hua Teng,et al.  Smoothed analysis of algorithms: why the simplex algorithm usually takes polynomial time , 2001, STOC '01.

[109]  M. Talagrand Concentration of measure and isoperimetric inequalities in product spaces , 1994, math/9406212.

[110]  William J. Cook,et al.  The Traveling Salesman Problem: A Computational Study , 2007 .

[111]  Alan M. Frieze,et al.  Efficient algorithms for three-dimensional axial and planar random assignment problems , 2015, Random Struct. Algorithms.

[112]  Alan M. Frieze,et al.  Analyzing Walksat on Random Formulas , 2011, ANALCO.

[113]  Alan M. Frieze,et al.  On smoothed k-CNF formulas and the Walksat algorithm , 2009, SODA.

[114]  Eli Ben-Sasson,et al.  Linear Upper Bounds for Random Walk on Small Density Random 3-CNFs , 2007, SIAM J. Comput..

[115]  R. Karp An Upper Bound on the Expected Cost of an Optimal Assignment , 1987 .