Regulation of evidence accumulation by pupil-linked arousal processes

[1]  Peter Dayan,et al.  Noradrenaline modulates decision urgency during sequential information gathering , 2018, bioRxiv.

[2]  Jonathan D. Cohen,et al.  A pupillary index of susceptibility to decision biases , 2018, Nature Human Behaviour.

[3]  Timothy D. Hanks,et al.  Causal contribution and dynamical encoding in the striatum during evidence accumulation , 2018, bioRxiv.

[4]  Charles D. Kopec,et al.  Posterior parietal cortex represents sensory history and mediates its effects on behaviour , 2017, Nature.

[5]  Il Memming Park,et al.  Functional dissection of signal and noise in MT and LIP during decision-making , 2017, Nature Neuroscience.

[6]  J. Gold,et al.  Arousal-related adjustments of perceptual biases optimize perception in dynamic environments , 2017, Nature Human Behaviour.

[7]  Niels A. Kloosterman,et al.  Dynamic modulation of decision biases by brainstem arousal systems , 2017, eLife.

[8]  Anne E. Urai,et al.  Pupil-linked arousal is driven by decision uncertainty and alters serial choice bias , 2017, Nature Communications.

[9]  Jan Drugowitsch,et al.  Computational Precision of Mental Inference as Critical Source of Human Choice Suboptimality , 2016, Neuron.

[10]  Peter R Murphy,et al.  Global gain modulation generates time-dependent urgency during perceptual choice in humans , 2016, Nature Communications.

[11]  D. McCormick,et al.  Pupil fluctuations track rapid changes in adrenergic and cholinergic activity in cortex , 2016, Nature Communications.

[12]  Jonathan W. Pillow,et al.  Dissociated functional significance of decision-related activity in the primate dorsal stream , 2016, Nature.

[13]  Justin L. Gardner,et al.  Adaptable history biases in human perceptual decisions , 2016, Proceedings of the National Academy of Sciences.

[14]  J. Gold,et al.  Relationships between Pupil Diameter and Neuronal Activity in the Locus Coeruleus, Colliculi, and Cingulate Cortex , 2016, Neuron.

[15]  Mara Mather,et al.  Cognitive control, dynamic salience, and the imperative toward computational accounts of neuromodulatory function , 2015, Behavioral and Brain Sciences.

[16]  Bingni W. Brunton,et al.  Distinct effects of prefrontal and parietal cortex inactivations on an accumulation of evidence task in the rat , 2015, bioRxiv.

[17]  Christopher Summerfield,et al.  Neural Mechanisms of Human Perceptual Choice Under Focused and Divided Attention , 2015, The Journal of Neuroscience.

[18]  Bingni W. Brunton,et al.  Distinct relationships of parietal and prefrontal cortices to evidence accumulation , 2014, Nature.

[19]  Joachim Vandekerckhove,et al.  Pupil-Linked Arousal Determines Variability in Perceptual Decision Making , 2014, PLoS Comput. Biol..

[20]  Samuel W Cheadle,et al.  Adaptive Gain Control during Human Perceptual Choice , 2014, Neuron.

[21]  Thomas V. Wiecki,et al.  Eye tracking and pupillometry are indicators of dissociable latent decision processes. , 2014, Journal of experimental psychology. General.

[22]  T. Knapen,et al.  Decision-related pupil dilation reflects upcoming choice and individual bias , 2014, Proceedings of the National Academy of Sciences.

[23]  Timothy E. J. Behrens,et al.  Dissociable effects of surprise and model update in parietal and anterior cingulate cortex , 2013, Proceedings of the National Academy of Sciences.

[24]  Jonathan D. Cohen,et al.  The effects of neural gain on attention and learning , 2013, Nature Neuroscience.

[25]  Matthew T. Kaufman,et al.  Cognitive neuroscience: Sensory noise drives bad decisions , 2013, Nature.

[26]  Bingni W. Brunton,et al.  Rats and Humans Can Optimally Accumulate Evidence for Decision-Making , 2013, Science.

[27]  Robert C. Wilson,et al.  Rational regulation of learning dynamics by pupil–linked arousal systems , 2012, Nature Neuroscience.

[28]  A. Pouget,et al.  Not Noisy, Just Wrong: The Role of Suboptimal Inference in Behavioral Variability , 2012, Neuron.

[29]  E. Yechiam,et al.  To Take Risk is to Face Loss: A Tonic Pupillometry Study , 2011, Front. Psychology.

[30]  Sander Nieuwenhuis,et al.  Pupil Diameter Predicts Changes in the Exploration–Exploitation Trade-off: Evidence for the Adaptive Gain Theory , 2011, Journal of Cognitive Neuroscience.

[31]  Philip Holmes,et al.  Optimality and Robustness of a Biophysical Decision-Making Model under Norepinephrine Modulation , 2009, The Journal of Neuroscience.

[32]  S. Sara The locus coeruleus and noradrenergic modulation of cognition , 2009, Nature Reviews Neuroscience.

[33]  A. Faisal,et al.  Noise in the nervous system , 2008, Nature Reviews Neuroscience.

[34]  Charles R. Crowell,et al.  Of Rats and Humans , 2007 .

[35]  Wei Ji Ma,et al.  Bayesian inference with probabilistic population codes , 2006, Nature Neuroscience.

[36]  J. Tenenbaum,et al.  Optimal Predictions in Everyday Cognition , 2006, Psychological science.

[37]  P. Dayan,et al.  Cortical substrates for exploratory decisions in humans , 2006, Nature.

[38]  W. Bialek,et al.  A sensory source for motor variation , 2005, Nature.

[39]  Jonathan D. Cohen,et al.  An integrative theory of locus coeruleus-norepinephrine function: adaptive gain and optimal performance. , 2005, Annual review of neuroscience.

[40]  Angela J. Yu,et al.  Uncertainty, Neuromodulation, and Attention , 2005, Neuron.

[41]  D. Barraclough,et al.  Prefrontal cortex and decision making in a mixed-strategy game , 2004, Nature Neuroscience.

[42]  Philip L. Smith,et al.  Psychology and neurobiology of simple decisions , 2004, Trends in Neurosciences.

[43]  J. Gold,et al.  Neural computations that underlie decisions about sensory stimuli , 2001, Trends in Cognitive Sciences.

[44]  Richard S. Sutton,et al.  Introduction to Reinforcement Learning , 1998 .

[45]  S. Menard Applied Logistic Regression Analysis , 1996 .

[46]  G. Aston-Jones,et al.  Locus coeruleus neurons in monkey are selectively activated by attended cues in a vigilance task , 1994, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[47]  J D Cohen,et al.  A network model of catecholamine effects: gain, signal-to-noise ratio, and behavior. , 1990, Science.

[48]  W. Newsome,et al.  A selective impairment of motion perception following lesions of the middle temporal visual area (MT) , 1988, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[49]  V. Barnett,et al.  Applied Linear Statistical Models , 1975 .