Computational motor control in humans and robots

[1]  S. Schaal The Computational Neurobiology of Reaching and Pointing — A Foundation for Motor Learning by Reza Shadmehr and Steven P. Wise , 2007 .

[2]  R. Andersen,et al.  Cognitive neural prosthetics. , 2010, Annual review of psychology.

[3]  Jun Nakanishi,et al.  Comparative experiments on task space control with redundancy resolution , 2005, 2005 IEEE/RSJ International Conference on Intelligent Robots and Systems.

[4]  Daniel M Wolpert,et al.  Optimal control of redundant muscles in step-tracking wrist movements. , 2005, Journal of neurophysiology.

[5]  M. Mistry,et al.  Arm movement experiments with joint space force fields using an exoskeleton robot , 2005, 9th International Conference on Rehabilitation Robotics, 2005. ICORR 2005..

[6]  J. Houk,et al.  Kinematic properties of on-line error corrections in the monkey , 2005, Experimental Brain Research.

[7]  S. Scott,et al.  Random change in cortical load representation suggests distinct control of posture and movement , 2005, Nature Neuroscience.

[8]  Philip N. Sabes,et al.  Flexible strategies for sensory integration during motor planning , 2005, Nature Neuroscience.

[9]  David C. Knill,et al.  Humans use continuous visual feedback from the hand to control both the direction and distance of pointing movements , 2005, Experimental Brain Research.

[10]  R. Shadmehr,et al.  Internal models and contextual cues: encoding serial order and direction of movement. , 2005, Journal of neurophysiology.

[11]  R. Andersen,et al.  Selecting the signals for a brain–machine interface , 2004, Current Opinion in Neurobiology.

[12]  D. Knill,et al.  The Bayesian brain: the role of uncertainty in neural coding and computation , 2004, Trends in Neurosciences.

[13]  Daniel M Wolpert,et al.  Bayesian integration in force estimation. , 2004, Journal of neurophysiology.

[14]  S. Schaal,et al.  Rhythmic arm movement is not discrete , 2004, Nature Neuroscience.

[15]  Terence D. Sanger,et al.  Failure of Motor Learning for Large Initial Errors , 2004, Neural Computation.

[16]  M. Kawato,et al.  Optimal impedance control for task achievement in the presence of signal-dependent noise. , 2004, Journal of neurophysiology.

[17]  Saori C. Tanaka,et al.  Prediction of immediate and future rewards differentially recruits cortico-basal ganglia loops , 2004, Nature Neuroscience.

[18]  Zhiwei Luo,et al.  Optimal trajectory formation of constrained human arm reaching movements , 2004, Biological Cybernetics.

[19]  Sean R Eddy,et al.  What is dynamic programming? , 2004, Nature Biotechnology.

[20]  Konrad Paul Körding,et al.  The loss function of sensorimotor learning. , 2004, Proceedings of the National Academy of Sciences of the United States of America.

[21]  R. Ivry,et al.  The neural representation of time , 2004, Current Opinion in Neurobiology.

[22]  K. Doya,et al.  Chaos may enhance information transmission in the inferior olive. , 2004, Proceedings of the National Academy of Sciences of the United States of America.

[23]  Kelvin E. Jones,et al.  The scaling of motor noise with muscle strength and motor unit number in humans , 2004, Experimental Brain Research.

[24]  Oussama Khatib,et al.  Whole-Body Dynamic Behavior and Control of Human-like Robots , 2004, Int. J. Humanoid Robotics.

[25]  T. Flash,et al.  When practice leads to co-articulation: the evolution of geometrically defined movement primitives , 2004, Experimental Brain Research.

[26]  K. Doya,et al.  A Neural Correlate of Reward-Based Behavioral Learning in Caudate Nucleus: A Functional Magnetic Resonance Imaging Study of a Stochastic Decision Task , 2004, The Journal of Neuroscience.

[27]  Emilio Salinas,et al.  Fast Remapping of Sensory Stimuli onto Motor Actions on the Basis of Contextual Modulation , 2004, The Journal of Neuroscience.

[28]  M. Kawato,et al.  Behavioral/systems/cognitive Functional Magnetic Resonance Imaging Examination of Two Modular Architectures for Switching Multiple Internal Models , 2022 .

[29]  M. Kawato,et al.  Random presentation enables subjects to adapt to two opposing forces on the hand , 2004, Nature Neuroscience.

[30]  R. J. van Beers,et al.  The role of execution noise in movement variability. , 2004, Journal of neurophysiology.

[31]  Konrad Paul Kording,et al.  Bayesian integration in sensorimotor learning , 2004, Nature.

[32]  Derek G. Kamper,et al.  Modeling Reaching Impairment After Stroke Using a Population Vector Model of Movement Control That Incorporates Neural Firing-Rate Variability , 2003, Neural Computation.

[33]  Robert A. Jacobs,et al.  A Developmental Approach Aids Motor Learning , 2003, Neural Computation.

[34]  R. Johansson,et al.  Action plans used in action observation , 2003, Nature.

[35]  E. Vaadia,et al.  Preparatory activity in motor cortex reflects learning of local visuomotor skills , 2003, Nature Neuroscience.

[36]  N. Hogan,et al.  Submovements grow larger, fewer, and more blended during stroke recovery. , 2003, Motor control.

[37]  M. Kawato,et al.  Modular organization of internal models of tools in the human cerebellum , 2003, Proceedings of the National Academy of Sciences of the United States of America.

[38]  R. Miall,et al.  Distinct systems for automatic and cognitively controlled time measurement: evidence from neuroimaging , 2003, Current Opinion in Neurobiology.

[39]  Daniel Kersten,et al.  Bayesian models of object perception , 2003, Current Opinion in Neurobiology.

[40]  Michael I. Jordan,et al.  Optimal feedback control as a theory of motor coordination , 2002, Nature Neuroscience.

[41]  Emilio Bizzi,et al.  Coordination and localization in spinal motor systems , 2002, Brain Research Reviews.

[42]  M. Graziano,et al.  Probing cortical function with electrical stimulation , 2002, Nature Neuroscience.

[43]  Kelvin E. Jones,et al.  Sources of signal-dependent noise during isometric force production. , 2002, Journal of neurophysiology.

[44]  Stefan Schaal,et al.  Forward models in visuomotor control. , 2002, Journal of neurophysiology.

[45]  Edward H. Adelson,et al.  Motion illusions as optimal percepts , 2002, Nature Neuroscience.

[46]  Mitsuo Kawato,et al.  Multiple Model-Based Reinforcement Learning , 2002, Neural Computation.

[47]  K. E. Novak,et al.  The use of overlapping submovements in the control of rapid hand movements , 2002, Experimental Brain Research.

[48]  Philip N. Sabes,et al.  The planning and control of reaching movements , 2000, Current Opinion in Neurobiology.

[49]  Reza Shadmehr,et al.  Learning of action through adaptive combination of motor primitives , 2000, Nature.

[50]  Oussama Khatib,et al.  Gauss' principle and the dynamics of redundant and constrained manipulators , 2000, Proceedings 2000 ICRA. Millennium Conference. IEEE International Conference on Robotics and Automation. Symposia Proceedings (Cat. No.00CH37065).

[51]  Mitsuo Kawato,et al.  Internal models for motor control and trajectory planning , 1999, Current Opinion in Neurobiology.

[52]  Stefan Schaal,et al.  Is imitation learning the route to humanoid robots? , 1999, Trends in Cognitive Sciences.

[53]  Gregor Schöner,et al.  The uncontrolled manifold concept: identifying control variables for a functional task , 1999, Experimental Brain Research.

[54]  D M Wolpert,et al.  Multiple paired forward and inverse models for motor control , 1998, Neural Networks.

[55]  Daniel M. Wolpert,et al.  Making smooth moves , 2022 .

[56]  M. Arbib,et al.  Role of the cerebellum in reaching movements in humans. II. A neural model of the intermediate cerebellum , 1998, The European journal of neuroscience.

[57]  W. T. Thach,et al.  Throwing while looking through prisms. II. Specificity and storage of multiple gaze-throw calibrations. , 1996, Brain : a journal of neurology.

[58]  W. T. Thach,et al.  Throwing while looking through prisms. I. Focal olivocerebellar lesions impair adaptation. , 1996, Brain : a journal of neurology.

[59]  Terence D. Sanger,et al.  Neural network learning control of robot manipulators using gradually increasing task difficulty , 1994, IEEE Trans. Robotics Autom..

[60]  Geoffrey E. Hinton,et al.  Adaptive Mixtures of Local Experts , 1991, Neural Computation.

[61]  H. Cruse,et al.  On the cost functions for the control of the human arm movement , 1990, Biological Cybernetics.

[62]  Anuradha M. Annaswamy,et al.  Stable Adaptive Systems , 1989 .

[63]  S. Lisberger The neural basis for motor learning in the vestibulo-ocular reflex in monkeys , 1988, Trends in Neurosciences.

[64]  Oussama Khatib,et al.  A unified approach for motion and force control of robot manipulators: The operational space formulation , 1987, IEEE J. Robotics Autom..

[65]  Yoshihiko Nakamura,et al.  Inverse kinematic solutions with singularity robustness for robot manipulator control , 1986 .

[66]  David J. C. MacKay,et al.  Information Theory, Inference, and Learning Algorithms , 2004, IEEE Transactions on Information Theory.

[67]  R. Shadmehr,et al.  Supplementary Information: Quantifying Generalization from Trial-by-Trial behavior of Adaptive Systems that Learn with Basis Functions , 2003 .

[68]  Jun Nakanishi,et al.  Learning Attractor Landscapes for Learning Motor Primitives , 2002, NIPS.

[69]  Andrew Y. Ng,et al.  Pharmacokinetics of a novel formulation of ivermectin after administration to goats , 2000, ICML.

[70]  G. Lintern Dynamic patterns: The self-organization of brain and behavior , 1997, Complex..

[71]  A. Opstal Dynamic Patterns: The Self-Organization of Brain and Behavior , 1995 .

[72]  Christopher M. Bishop,et al.  Neural networks for pattern recognition , 1995 .

[73]  D. Wolpert,et al.  Is the cerebellum a smith predictor? , 1993, Journal of motor behavior.

[74]  Weiping Li,et al.  Applied Nonlinear Control , 1991 .

[75]  Alan J. McComas,et al.  Human muscle power , 1986 .

[76]  D A Robinson,et al.  The use of control systems analysis in the neurophysiology of eye movements. , 1981, Annual review of neuroscience.