Simulating the human visual system: towards objective measurement of visual annoyance

This paper presents a functioning diagram of the human visual system and the implementation simulating it. Basically, it constructs image representations and compares them in order to recognise them. A correlation has been found between recognition results and human observer quality scores. Image quality is discussed and visual annoyance is developed.

[1]  Harry Wechsler,et al.  The FERET database and evaluation procedure for face-recognition algorithms , 1998, Image Vis. Comput..

[2]  Robert N. McCauley,et al.  Heuristic Identity Theory (or Back to the Future): The Mind-Body Problem Against the Background of Research Strategies in Cognitive Neuroscience , 2020, Proceedings of the Twenty First Annual Conference of the Cognitive Science Society.

[3]  D A Pollen,et al.  On the neural correlates of visual perception. , 1999, Cerebral cortex.

[4]  A. Martínez,et al.  The AR face databasae , 1998 .

[5]  D. Hubel,et al.  Receptive fields of single neurones in the cat's striate cortex , 1959, The Journal of physiology.

[6]  D H HUBEL,et al.  RECEPTIVE FIELDS AND FUNCTIONAL ARCHITECTURE IN TWO NONSTRIATE VISUAL AREAS (18 AND 19) OF THE CAT. , 1965, Journal of neurophysiology.

[7]  P. H. Schiller,et al.  The effects of V4 and middle temporal (MT) area lesions on visual performance in the rhesus monkey , 1993, Visual Neuroscience.

[8]  Scott J. Daly,et al.  Visible differences predictor: an algorithm for the assessment of image fidelity , 1992, Electronic Imaging.

[9]  H. A. Pham,et al.  V4 lesions in macaques affect both single- and multiple-viewpoint shape discriminations , 1998, Visual Neuroscience.

[10]  Claudio M. Privitera,et al.  Algorithms for Defining Visual Regions-of-Interest: Comparison with Eye Fixations , 2000, IEEE Trans. Pattern Anal. Mach. Intell..

[11]  H. Nothdurft,et al.  Texture discrimination: Representation of orientation and luminance differences in cells of the cat striate cortex , 1985, Vision Research.

[12]  Ilya A. Rybak,et al.  Behavioral model of visual perception and recognition , 1993, Electronic Imaging.

[13]  S. Zeki,et al.  Colour coding in rhesus monkey prestriate cortex. , 1973, Brain research.

[14]  Wilson S. Geisler,et al.  Retinally reconstructed images (RRIs): digital images having a resolution match with the human eye , 1998, Electronic Imaging.

[15]  S. Zeki Functional organization of a visual area in the posterior bank of the superior temporal sulcus of the rhesus monkey , 1974, The Journal of physiology.

[16]  C. Koch,et al.  Consciousness and neuroscience. , 1998, Cerebral cortex.

[17]  Patrick Le Callet Critères objectifs avec référence de qualité visuelle des images couleur , 2001 .

[18]  A. Cowey PROJECTION OF THE RETINA ON TO STRIATE AND PRESTRIATE CORTEX IN THE SQUIRREL MONKEY, SAIMIRI SCIUREUS. , 1964, Journal of neurophysiology.

[19]  D. Hubel,et al.  Receptive fields and functional architecture of monkey striate cortex , 1968, The Journal of physiology.

[20]  Leslie G. Ungerleider,et al.  Contour, color and shape analysis beyond the striate cortex , 1985, Vision Research.

[21]  D. Hubel,et al.  Receptive fields, binocular interaction and functional architecture in the cat's visual cortex , 1962, The Journal of physiology.