Human Visual System—Spatial Visual Processing

The human visual system is a remarkably versatile and powerful spatial image processor. The eye itself is only a small part of the visual mechanism. The task of analyzing and comprehending the visual world is so complex that the brain devotes between one-third and one-half of the entire cerebral cortex to solving it: all of the occipital lobe and large parts of the parietal, temporal, and frontal lobes as well. To appreciate the magnitude of the task of visual processing, it is useful to consider some of the problems that the visual system must address in the course of analyzing visual images. Solutions to initial problems are discussed. Details on the visual processing of the eye including visual analysis and coding strategies and cortical processing are given. Keywords: problems; solutions; visual processing; eyes; photoreceptors; retinal processing; coding strategies; cortical processing

[1]  Monika Harvey,et al.  Psychic paralysis of gaze, optic ataxia, and spatial disorder of attention , 1995 .

[2]  V. Casagrande A third parallel visual pathway to primate area V1 , 1994, Trends in Neurosciences.

[3]  R. L. Valois Analysis and coding of color vision in the primate visual system. , 1965 .

[4]  P. Lennie,et al.  Chromatic mechanisms in lateral geniculate nucleus of macaque. , 1984, The Journal of physiology.

[5]  J. Robson,et al.  Application of fourier analysis to the visibility of gratings , 1968, The Journal of physiology.

[6]  H C Nothdurft,et al.  Common properties of visual segmentation. , 1994, Ciba Foundation symposium.

[7]  C. Blakemore,et al.  The neural mechanism of binocular depth discrimination , 1967, The Journal of physiology.

[8]  D. G. Albrecht,et al.  Spatial frequency selectivity of cells in macaque visual cortex , 1982, Vision Research.

[9]  H. Barlow Why have multiple cortical areas? , 1986, Vision Research.

[10]  David J. Field,et al.  What Is the Goal of Sensory Coding? , 1994, Neural Computation.

[11]  Paul R. Martin,et al.  Immunocytochemical characterization and spatial distribution of midget bipolar cells in the macaque monkey retina , 1994, Vision Research.

[12]  C. Blakemore,et al.  Size Adaptation: A New Aftereffect , 1969, Science.

[13]  D. G. Albrecht,et al.  Spatial mapping of monkey VI cells with pure color and luminance stimuli , 1984, Vision Research.

[14]  J. M. Foley,et al.  Contrast masking in human vision. , 1980, Journal of the Optical Society of America.

[15]  G. H. Jacobs,et al.  More than three different cone pigments among people with normal color vision , 1993, Vision Research.

[16]  R. von der Heydt,et al.  Illusory contours and cortical neuron responses. , 1984, Science.

[17]  E. Switkes,et al.  Deoxyglucose analysis of retinotopic organization in primate striate cortex. , 1982, Science.

[18]  T. Lamb,et al.  Cyclic GMP and calcium: The internal messengers of excitation and adaptation in vertebrate photoreceptors , 1990, Vision Research.

[19]  C Blakemore,et al.  On the existence of neurones in the human visual system selectively sensitive to the orientation and size of retinal images , 1969, The Journal of physiology.

[20]  R. L. Valois,et al.  A multi-stage color model , 1993, Vision Research.

[21]  A. Hendrickson,et al.  Human photoreceptor topography , 1990, The Journal of comparative neurology.

[22]  F M de Monasterio,et al.  Arrangement of ocular dominance columns in human visual cortex. , 1990, Archives of ophthalmology.

[23]  R. L. Valois,et al.  Analysis of response patterns of LGN cells. , 1966, Journal of the Optical Society of America.

[24]  D. Hubel,et al.  Receptive fields, binocular interaction and functional architecture in the cat's visual cortex , 1962, The Journal of physiology.