RPM-Net: Robust Point Matching Using Learned Features

Iterative Closest Point (ICP) solves the rigid point cloud registration problem iteratively in two steps: (1) make hard assignments of spatially closest point correspondences, and then (2) find the least-squares rigid transformation. The hard assignments of closest point correspondences based on spatial distances are sensitive to the initial rigid transformation and noisy/outlier points, which often cause ICP to converge to wrong local minima. In this paper, we propose the RPM-Net -- a less sensitive to initialization and more robust deep learning-based approach for rigid point cloud registration. To this end, our network uses the differentiable Sinkhorn layer and annealing to get soft assignments of point correspondences from hybrid features learned from both spatial coordinates and local geometry. To further improve registration performance, we introduce a secondary network to predict optimal annealing parameters. Unlike some existing methods, our RPM-Net handles missing correspondences and point clouds with partial visibility. Experimental results show that our RPM-Net achieves state-of-the-art performance compared to existing non-deep learning and recent deep learning methods. Our source code is available at the project website (https://github.com/yewzijian/RPMNet).

[1]  Federico Tombari,et al.  Unique shape context for 3d data description , 2010, 3DOR '10.

[2]  Mohammed Bennamoun,et al.  A Comprehensive Performance Evaluation of 3D Local Feature Descriptors , 2015, International Journal of Computer Vision.

[3]  Kaiming He,et al.  Group Normalization , 2018, ECCV.

[4]  Jianxiong Xiao,et al.  3D ShapeNets: A deep representation for volumetric shapes , 2014, 2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[5]  Takeo Kanade,et al.  An Iterative Image Registration Technique with an Application to Stereo Vision , 1981, IJCAI.

[6]  Howie Choset,et al.  PCRNet: Point Cloud Registration Network using PointNet Encoding , 2019, ArXiv.

[7]  Andrew E. Johnson,et al.  Using Spin Images for Efficient Object Recognition in Cluttered 3D Scenes , 1999, IEEE Trans. Pattern Anal. Mach. Intell..

[8]  Paul J. Besl,et al.  A Method for Registration of 3-D Shapes , 1992, IEEE Trans. Pattern Anal. Mach. Intell..

[9]  Eric Mjolsness,et al.  New Algorithms for 2D and 3D Point Matching: Pose Estimation and Correspondence , 1998, NIPS.

[10]  H. Chui,et al.  A feature registration framework using mixture models , 2000, Proceedings IEEE Workshop on Mathematical Methods in Biomedical Image Analysis. MMBIA-2000 (Cat. No.PR00737).

[11]  Leonidas J. Guibas,et al.  PointNet: Deep Learning on Point Sets for 3D Classification and Segmentation , 2016, 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[12]  Lukasz Kaiser,et al.  Attention is All you Need , 2017, NIPS.

[13]  Leonidas J. Guibas,et al.  PointNet++: Deep Hierarchical Feature Learning on Point Sets in a Metric Space , 2017, NIPS.

[14]  Yue Wang,et al.  PRNet: Self-Supervised Learning for Partial-to-Partial Registration , 2019, NeurIPS.

[15]  Yasuhiro Aoki,et al.  PointNetLK: Robust & Efficient Point Cloud Registration Using PointNet , 2019, 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR).

[16]  Manolis I. A. Lourakis,et al.  Estimating the Jacobian of the Singular Value Decomposition: Theory and Applications , 2000, ECCV.

[17]  C. D. Gelatt,et al.  Optimization by Simulated Annealing , 1983, Science.

[18]  Marc Levoy,et al.  Geometrically stable sampling for the ICP algorithm , 2003, Fourth International Conference on 3-D Digital Imaging and Modeling, 2003. 3DIM 2003. Proceedings..

[19]  Slobodan Ilic,et al.  PPFNet: Global Context Aware Local Features for Robust 3D Point Matching , 2018, 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition.

[20]  Bisheng Yang,et al.  A novel binary shape context for 3D local surface description , 2017 .

[21]  Anoop Cherian,et al.  DeepPermNet: Visual Permutation Learning , 2017, 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[22]  Zi Jian Yew,et al.  3DFeat-Net: Weakly Supervised Local 3D Features for Point Cloud Registration , 2018, ECCV.

[23]  Matthias Nießner,et al.  3DMatch: Learning Local Geometric Descriptors from RGB-D Reconstructions , 2016, 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[24]  Vladlen Koltun,et al.  Open3D: A Modern Library for 3D Data Processing , 2018, ArXiv.

[25]  Marc Levoy,et al.  Efficient variants of the ICP algorithm , 2001, Proceedings Third International Conference on 3-D Digital Imaging and Modeling.

[26]  Yue Wang,et al.  Deep Closest Point: Learning Representations for Point Cloud Registration , 2019, 2019 IEEE/CVF International Conference on Computer Vision (ICCV).

[27]  Jimmy Ba,et al.  Adam: A Method for Stochastic Optimization , 2014, ICLR.

[28]  Jiaxin Li,et al.  USIP: Unsupervised Stable Interest Point Detection From 3D Point Clouds , 2019, 2019 IEEE/CVF International Conference on Computer Vision (ICCV).

[29]  Nico Blodow,et al.  Aligning point cloud views using persistent feature histograms , 2008, 2008 IEEE/RSJ International Conference on Intelligent Robots and Systems.

[30]  Marc Rioux,et al.  Three-dimensional registration using range and intensity information , 1994, Other Conferences.

[31]  Jiaolong Yang,et al.  Go-ICP: A Globally Optimal Solution to 3D ICP Point-Set Registration , 2016, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[32]  Richard Sinkhorn A Relationship Between Arbitrary Positive Matrices and Doubly Stochastic Matrices , 1964 .

[33]  Yue Wang,et al.  Dynamic Graph CNN for Learning on Point Clouds , 2018, ACM Trans. Graph..

[34]  Nico Blodow,et al.  Fast Point Feature Histograms (FPFH) for 3D registration , 2009, 2009 IEEE International Conference on Robotics and Automation.

[35]  Simon Baker,et al.  Lucas-Kanade 20 Years On: A Unifying Framework , 2004, International Journal of Computer Vision.

[36]  Shiyu Song,et al.  DeepVCP: An End-to-End Deep Neural Network for Point Cloud Registration , 2019, 2019 IEEE/CVF International Conference on Computer Vision (ICCV).

[37]  Bisheng Yang,et al.  Iterative Global Similarity Points: A Robust Coarse-to-Fine Integration Solution for Pairwise 3D Point Cloud Registration , 2018, 2018 International Conference on 3D Vision (3DV).

[38]  Jitendra Malik,et al.  Recognizing Objects in Range Data Using Regional Point Descriptors , 2004, ECCV.

[39]  Hui Chen,et al.  3D free-form object recognition in range images using local surface patches , 2004, Proceedings of the 17th International Conference on Pattern Recognition, 2004. ICPR 2004..

[40]  Vladlen Koltun,et al.  Fast Global Registration , 2016, ECCV.

[41]  Federico Tombari,et al.  SHOT: Unique signatures of histograms for surface and texture description , 2014, Comput. Vis. Image Underst..

[42]  Gérard G. Medioni,et al.  Object modeling by registration of multiple range images , 1991, Proceedings. 1991 IEEE International Conference on Robotics and Automation.

[43]  Takeo Kanade,et al.  A Correlation-Based Approach to Robust Point Set Registration , 2004, ECCV.

[44]  Hongdong Li,et al.  The 3D-3D Registration Problem Revisited , 2007, 2007 IEEE 11th International Conference on Computer Vision.