Modeling non-standard retinal in/out function using computer vision variational methods

We propose a computational approach using a variational specification of the visual front-end, where ganglion cells with properties of retinal Konio cells (K-cells), are considered as a network, yielding a mesoscopic view of the retinal process. The variational framework is implemented as a simple mechanism of diffusion in a two-layered non-linear filtering mechanism with feedback, as observed in synaptic layers of the retina, while its biological plausibility, and capture functionalities as (i) stimulus adapted response; (ii) non-local noise reduction (i.e. segmentation); (iii) visual event detection, taking several visual cues into account: contrast and local texture, color or edge channels, and motion base in natural images. Those functionalities could be implemented in the biological tissues We use computer vision methods to propose an effective link between the observed functions and their possible implementation in the retinal network base on a two-layers network with non-separable local spatio-temporal convolution as input, and recurrent connections performing non-linear diffusion before prototype based visual event detection. The numerical robustness of the proposed model has been experimentally checked on real natural images. Finally, we discuss in base of experimental biological and computational results the generality of our description.

[1]  The Journal of Comparative Neurology , 1899, The American Naturalist.

[2]  Jonathon Shlens,et al.  Correlated firing among major ganglion cell types in primate retina , 2011, The Journal of physiology.

[3]  Elaa Teftef Formalisation de la transformation analogique / événementielle des mécanismes non-standards des cellules ganglionnaires de la rétine. , 2012 .

[4]  Michael J. Berry,et al.  Fine Spatial Information Represented in a Population of Retinal Ganglion Cells , 2011, The Journal of Neuroscience.

[5]  Victor A. F. Lamme Blindsight: the role of feedforward and feedback corticocortical connections. , 2001, Acta psychologica.

[6]  R. Reid,et al.  The koniocellular pathway in primate vision. , 2000, Annual review of neuroscience.

[7]  Tim Gollisch,et al.  Rapid Neural Coding in the Retina with Relative Spike Latencies , 2008, Science.

[8]  M. Meister,et al.  Dynamic predictive coding by the retina , 2005, Nature.

[9]  A. Kirkwood,et al.  Postsynaptic dysfunction is associated with spatial and object recognition memory loss in a natural model of Alzheimer’s disease , 2012, Proceedings of the National Academy of Sciences.

[10]  Muralidhara Subbarao,et al.  Bounds on time-to-collision and rotational component from first-order derivatives of image flow , 1990, Comput. Vis. Graph. Image Process..

[11]  Eero P. Simoncelli Vision and the statistics of the visual environment , 2003, Current Opinion in Neurobiology.

[12]  E. Callaway Local circuits in primary visual cortex of the macaque monkey. , 1998, Annual review of neuroscience.

[13]  V. Lamme,et al.  The distinct modes of vision offered by feedforward and recurrent processing , 2000, Trends in Neurosciences.

[14]  Antonin Chambolle,et al.  Image Segmentation by Variational Methods: Mumford and Shah Functional and the Discrete Approximations , 1995, SIAM J. Appl. Math..

[15]  Thierry Viéville,et al.  Formalization of the input/output retinal transformation regarding non-standard ganglion cells behavior , 2012 .

[16]  Herbert F. Voigt,et al.  IEEE Engineering in Medicine and Biology Society , 2019, IEEE Transactions on Biomedical Engineering.

[17]  Adrien Wohrer Model and large-scale simulator of a biological retina, with contrast gain control. (Modèle et simulateur à grande échelle d'une rétine biologique, avec contrôle de gain) , 2008 .

[18]  A. Chambolle,et al.  Discrete approximation of the Mumford-Shah functional in dimension two , 1999, ESAIM: Mathematical Modelling and Numerical Analysis.

[19]  Pierre Kornprobst,et al.  Can the Nonlocal Characterization of Sobolev Spaces by Bourgain et al. Be Useful for Solving Variational Problems? , 2009, SIAM J. Numer. Anal..

[20]  H Barlow,et al.  Redundancy reduction revisited , 2001, Network.

[21]  Rodrigo F. Salazar,et al.  Responses to natural scenes in cat V1. , 2003, Journal of neurophysiology.

[22]  Antonio Torralba,et al.  Statistics of natural image categories , 2003, Network.

[23]  M. Koivisto,et al.  Recurrent Processing in V1/V2 Contributes to Categorization of Natural Scenes , 2011, The Journal of Neuroscience.

[24]  Frank S Werblin,et al.  The retinal hypercircuit: a repeating synaptic interactive motif underlying visual function , 2011, The Journal of physiology.

[25]  Jonathon Shlens,et al.  Spatial Properties and Functional Organization of Small Bistratified Ganglion Cells in Primate Retina , 2007, The Journal of Neuroscience.

[26]  S. Thorpe,et al.  Seeking Categories in the Brain , 2001, Science.

[27]  Rufin van Rullen,et al.  Rate Coding Versus Temporal Order Coding: What the Retinal Ganglion Cells Tell the Visual Cortex , 2001, Neural Computation.

[28]  Michael J. Berry,et al.  Sophisticated temporal pattern recognition in retinal ganglion cells. , 2008, Journal of neurophysiology.

[29]  Michael B. Stadler,et al.  Encoding of conditioned fear in central amygdala inhibitory circuits , 2010, Nature.

[30]  Michael S. Lewicki,et al.  Is Early Vision Optimized for Extracting Higher-order Dependencies? , 2005, NIPS.

[31]  Thierry Viéville,et al.  Using an Hebbian Learning Rule for Multi-Class SVM Classifiers , 2004, Journal of Computational Neuroscience.

[32]  Oliver Schmachtenberg,et al.  The GABAergic system in the retina of neonate and adult Octodon degus, studied by immunohistochemistry and electroretinography , 2009, The Journal of comparative neurology.

[33]  Dawei W. Dong,et al.  Spatiotemporal Inseparability of Natural Images and Visual Sensitivities , 2001 .

[34]  L. Chalupa,et al.  The visual neurosciences , 2004 .

[35]  R C Reid,et al.  Efficient Coding of Natural Scenes in the Lateral Geniculate Nucleus: Experimental Test of a Computational Theory , 1996, The Journal of Neuroscience.

[36]  Denis Fize,et al.  Speed of processing in the human visual system , 1996, Nature.

[37]  Tim Gollisch,et al.  Eye Smarter than Scientists Believed: Neural Computations in Circuits of the Retina , 2010, Neuron.

[38]  R. Shapley,et al.  Linear and nonlinear spatial subunits in Y cat retinal ganglion cells. , 1976, The Journal of physiology.

[39]  E. Callaway,et al.  Parallel processing strategies of the primate visual system , 2009, Nature Reviews Neuroscience.

[40]  Paul R. Martin,et al.  The unsolved mystery of vision , 2007, Current Biology.

[41]  Jonathon Shlens,et al.  Receptive Fields in Primate Retina Are Coordinated to Sample Visual Space More Uniformly , 2009, PLoS biology.

[42]  Ahmad Yoonessi,et al.  Functional Assessment of Magno, Parvo and Konio-Cellular Pathways; Current State and Future Clinical Applications , 2011, Journal of ophthalmic & vision research.

[43]  Francisco Bozinovic,et al.  Eye and vision in the subterranean rodent cururo (Spalacopus cyanus, octodontidae) , 2005, The Journal of comparative neurology.

[44]  Eero P. Simoncelli,et al.  Natural image statistics and neural representation. , 2001, Annual review of neuroscience.

[45]  Pierre Kornprobst,et al.  How do high-level specifications of the brain relate to variational approaches? , 2007, Journal of Physiology-Paris.

[46]  Kurt Hornik,et al.  Multilayer feedforward networks are universal approximators , 1989, Neural Networks.

[47]  Alan Cowey,et al.  Visual System: How Does Blindsight Arise? , 2010, Current Biology.

[48]  A.M. Litke,et al.  What does the eye tell the brain?: Development of a system for the large scale recording of retinal output activity , 2003, 2003 IEEE Nuclear Science Symposium. Conference Record (IEEE Cat. No.03CH37515).

[49]  Stephen A. Baccus,et al.  Segregation of object and background motion in the retina , 2003, Nature.