A Motion Direction Map in Macaque V2

In mammals, the perception of motion starts with direction-selective neurons in the visual cortex. Despite numerous studies in monkey primary and second visual cortex (V1 and V2), there has been no evidence of direction maps in these areas. In the present study, we used optical imaging methods to study the organization of motion response in macaque V1 and V2. In contrast to the findings in other mammals (e.g., cats and ferrets), we found no direction maps in macaque V1. Robust direction maps, however, were found in V2 thick/pale stripes and avoided thin stripes. In many cases direction maps were located within thick stripes and exhibited pinwheel or linear organizations. The presence of motion maps in V2 points to a newfound prominence of V2 in motion processing, for contributing to motion perception in the dorsal pathway and/or for motion cue-dependent form perception in the ventral pathway.

[1]  K. Martin,et al.  Connection from cortical area V2 to V3A in macaque monkey , 2002, The Journal of comparative neurology.

[2]  D. Ts'o,et al.  Functional organization of primate visual cortex revealed by high resolution optical imaging. , 1990, Science.

[3]  K. Rockland,et al.  Morphology of individual axons projecting from area V2 to MT in the macaque , 1995, The Journal of comparative neurology.

[4]  Neuronal activity during discrimination of shapes defined by motion in area V4 , 2010, Neuroreport.

[5]  G. DeAngelis,et al.  Organization of Disparity-Selective Neurons in Macaque Area MT , 1999, The Journal of Neuroscience.

[6]  L. Garey Cerebral Cortex, vol. 12. Extrastriate Cortex in Primates. Edited by KATHLEEN S. ROCKLAND, JOHN H. KAAS and ALAN PETERS. (Pp. xxi+844; illustrated; $159.50 hardback; ISBN 0 306 45530 7.) New York: Plenum. 1997. , 1998 .

[7]  Anthony J. Movshon,et al.  Visual Response Properties of Striate Cortical Neurons Projecting to Area MT in Macaque Monkeys , 1996, The Journal of Neuroscience.

[8]  Gregory C DeAngelis,et al.  Disparity Channels in Early Vision , 2007, The Journal of Neuroscience.

[9]  A W Roe,et al.  Specificity of color connectivity between primate V1 and V2. , 1999, Journal of neurophysiology.

[10]  S. Ullman,et al.  Retinotopic Axis Specificity and Selective Clustering of Feedback Projections from V2 to V1 in the Owl Monkey , 2005, The Journal of Neuroscience.

[11]  S. Zeki,et al.  Responses of spectrally selective cells in macaque area V2 to wavelengths and colors. , 2002, Journal of neurophysiology.

[12]  E. Peterhans,et al.  Functional Organization of Area V2 in the Alert Macaque , 1993, The European journal of neuroscience.

[13]  M. Hawken,et al.  Laminar organization and contrast sensitivity of direction-selective cells in the striate cortex of the Old World monkey , 1988, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[14]  D. Ts'o,et al.  Visual topography in primate V2: multiple representation across functional stripes , 1995, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[15]  C. Schroeder,et al.  A spatiotemporal profile of visual system activation revealed by current source density analysis in the awake macaque. , 1998, Cerebral cortex.

[16]  M. Cynader,et al.  Surface organization of orientation and direction selectivity in cat area 18 , 1987, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[17]  J. C. Anderson,et al.  The Connection from Cortical Area V1 to V5: A Light and Electron Microscopic Study , 1998, The Journal of Neuroscience.

[18]  J. B. Levitt,et al.  Receptive fields and functional architecture of macaque V2. , 1994, Journal of neurophysiology.

[19]  C. Hung,et al.  Real and illusory contour processing in area V1 of the primate: a cortical balancing act. , 2001, Cerebral cortex.

[20]  Jun Xiao,et al.  Hue maps in primate striate cortex , 2007, NeuroImage.

[21]  M. Carandini,et al.  Mapping of stimulus energy in primary visual cortex. , 2005, Journal of neurophysiology.

[22]  D. G. Albrecht,et al.  Motion direction signals in the primary visual cortex of cat and monkey. , 2001, Visual neuroscience.

[23]  Charles D. Gilbert,et al.  A hierarchy of the functional organization for color, form and disparity in primate visual area V2 , 2001, Vision Research.

[24]  R. L. Valois,et al.  The orientation and direction selectivity of cells in macaque visual cortex , 1982, Vision Research.

[25]  B. Dow Functional classes of cells and their laminar distribution in monkey visual cortex. , 1974, Journal of neurophysiology.

[26]  D. Hubel,et al.  Receptive fields and functional architecture of monkey striate cortex , 1968, The Journal of physiology.

[27]  D. Wilkin,et al.  Neuron , 2001, Brain Research.

[28]  K R Gegenfurtner,et al.  Processing of color, form, and motion in macaque area V2 , 1996, Visual Neuroscience.

[29]  R. Tootell,et al.  Functional anatomy of the second visual area (V2) in the macaque , 1989, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[30]  B. R. Payne,et al.  Organization of direction preferences in cat visual cortex , 1981, Brain Research.

[31]  A. Leventhal,et al.  Signal timing across the macaque visual system. , 1998, Journal of neurophysiology.

[32]  K. Rockland,et al.  Bistratified distribution of terminal arbors of individual axons projecting from area V1 to middle temporal area (MT) in the macaque monkey , 1989, Visual Neuroscience.

[33]  A. Roe,et al.  Visual System: Functional Architecture of Area V2 , 2009 .

[34]  D. Hubel,et al.  Receptive fields, binocular interaction and functional architecture in the cat's visual cortex , 1962, The Journal of physiology.

[35]  Nikos K. Logothetis,et al.  Motion Processing in the Macaque: Revisited with Functional Magnetic Resonance Imaging , 2001, The Journal of Neuroscience.

[36]  Leonard E. White,et al.  Mapping multiple features in the population response of visual cortex , 2003, Nature.

[37]  Anna W. Roe,et al.  The Functional Architecture of Area V2 in the Macaque Monkey , 1997 .

[38]  U. Eysel,et al.  Calculating direction maps from intrinsic signals revealed by optical imaging. , 2001, Cerebral cortex.

[39]  Sooyoung Chung,et al.  Functional imaging with cellular resolution reveals precise micro-architecture in visual cortex , 2005, Nature.

[40]  R. von der Heydt,et al.  Coding of Border Ownership in Monkey Visual Cortex , 2000, The Journal of Neuroscience.

[41]  Ricardo Gattass,et al.  Electrophysiological Imaging of Functional Architecture in the Cortical Middle Temporal Visual Area of Cebus apella Monkey , 2003, The Journal of Neuroscience.

[42]  DH Hubel,et al.  Segregation of form, color, and stereopsis in primate area 18 , 1987, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[43]  Youping Xiao,et al.  Organization of hue selectivity in macaque V2 thin stripes. , 2009, Journal of neurophysiology.

[44]  Keiji Tanaka,et al.  Optical Imaging of Functional Organization in the Monkey Inferotemporal Cortex , 1996, Science.

[45]  D. Hubel,et al.  Anatomy and physiology of a color system in the primate visual cortex , 1984, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[46]  D. Fitzpatrick,et al.  Orientation Selectivity and the Arrangement of Horizontal Connections in Tree Shrew Striate Cortex , 1997, The Journal of Neuroscience.

[47]  J. Kaas,et al.  The Primate visual system , 2003 .

[48]  Keiji Tanaka,et al.  Representation of Visual Features of Objects in the Inferotemporal Cortex , 1996, Neural Networks.

[49]  P Girard,et al.  Visual latencies in cytochrome oxidase bands of macaque area V2. , 1995, Proceedings of the National Academy of Sciences of the United States of America.

[50]  A Grinvald,et al.  Optical imaging reveals the functional architecture of neurons processing shape and motion in owl monkey area MT , 1994, Proceedings of the Royal Society of London. Series B: Biological Sciences.

[51]  R. Born,et al.  Integrating motion and depth via parallel pathways , 2008, Nature Neuroscience.

[52]  O. Braddick Segmentation versus integration in visual motion processing , 1993, Trends in Neurosciences.

[53]  E. DeYoe,et al.  Segregation of efferent connections and receptive field properties in visual area V2 of the macaque , 1985, Nature.

[54]  Anna W. Roe,et al.  A Map for Horizontal Disparity in Monkey V2 , 2008, Neuron.

[55]  Anna W Roe,et al.  Long-term optical imaging of intrinsic signals in anesthetized and awake monkeys. , 2007, Applied optics.

[56]  R. Born Center-surround interactions in the middle temporal visual area of the owl monkey. , 2000, Journal of neurophysiology.

[57]  D H Hubel,et al.  Connections between layer 4B of area 17 and the thick cytochrome oxidase stripes of area 18 in the squirrel monkey , 1987, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[58]  Anna W. Roe,et al.  Modular Complexity of Area V2 in the Macaque Monkey , 2003 .

[59]  Edward M. Callaway,et al.  Specialized Circuits from Primary Visual Cortex to V2 and Area MT , 2007, Neuron.

[60]  Gang Chen,et al.  A rapid topographic mapping and eye alignment method using optical imaging in Macaque visual cortex , 2009, NeuroImage.

[61]  A. Grinvald,et al.  Functional Organization for Direction of Motion and Its Relationship to Orientation Maps in Cat Area 18 , 1996, The Journal of Neuroscience.

[62]  Christopher C. Pack,et al.  Integration of Contour and Terminator Signals in Visual Area MT of Alert Macaque , 2004, The Journal of Neuroscience.

[63]  G. Orban,et al.  Processing of kinetically defined boundaries in areas V1 and V2 of the macaque monkey. , 2000, Journal of neurophysiology.

[64]  Anna W Roe,et al.  Optical imaging of contrast response in Macaque monkey V1 and V2. , 2007, Cerebral cortex.

[65]  G. Orban,et al.  Velocity sensitivity and direction selectivity of neurons in areas V1 and V2 of the monkey: influence of eccentricity. , 1986, Journal of neurophysiology.

[66]  C. Hung,et al.  Cortical processing of a brightness illusion. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[67]  C. Gilbert Laminar differences in receptive field properties of cells in cat primary visual cortex , 1977, The Journal of physiology.

[68]  S. Zeki,et al.  The functional organization of area V2, I: Specialization across stripes and layers , 2002, Visual Neuroscience.

[69]  P. Schiller,et al.  Quantitative studies of single-cell properties in monkey striate cortex. I. Spatiotemporal organization of receptive fields. , 1976, Journal of neurophysiology.

[70]  Li Min Chen,et al.  IMAGING IN , 2022 .

[71]  D. Heeger,et al.  Neuronal Basis of the Motion Aftereffect Reconsidered , 2001, Neuron.

[72]  D. Fitzpatrick,et al.  A systematic map of direction preference in primary visual cortex , 1996, Nature.

[73]  K. Fujii,et al.  Visualization for the analysis of fluid motion , 2005, J. Vis..

[74]  S. Zeki,et al.  Segregation of pathways leading from area V2 to areas V4 and V5 of macaque monkey visual cortex , 1985, Nature.

[75]  D. J. Felleman,et al.  A spatially organized representation of colour in macaque cortical area V2 , 2003, Nature.

[76]  Peter M. Kaskan,et al.  Orientation and Direction-of-Motion Response in the Middle Temporal Visual Area (MT) of New World Owl Monkeys as Revealed by Intrinsic-Signal Optical Imaging , 2010, Frontiers in Neuroanatomy.

[77]  Xiangmin Xu,et al.  Optical imaging of visually evoked responses in prosimian primates reveals conserved features of the middle temporal visual area. , 2004, Proceedings of the National Academy of Sciences of the United States of America.

[78]  Andrew T. Smith,et al.  Sensitivity of human visual cortical areas to the stereoscopic depth of a moving stimulus. , 2008, Journal of vision.

[79]  R. Desimone,et al.  Columnar organization of directionally selective cells in visual area MT of the macaque. , 1984, Journal of neurophysiology.

[80]  G. Orban,et al.  Visual Motion Processing Investigated Using Contrast Agent-Enhanced fMRI in Awake Behaving Monkeys , 2001, Neuron.

[81]  Moshe Gur,et al.  Cerebral Cortex doi:10.1093/cercor/bhi003 Orientation and Direction Selectivity of Neurons in V1 of Alert Monkeys: Functional Relationships and Laminar Distributions , 2022 .

[82]  A. Roe,et al.  Cerebral Cortex Advance Access published June 18, 2007 Functional Organization of Color Domains in V1 and V2 of Macaque Monkey Revealed by Optical Imaging , 2022 .

[83]  Wilson S. Geisler,et al.  Motion streaks provide a spatial code for motion direction , 1999, Nature.