Edge-deletion and edge-contraction problems

For a property -&-pgr; on graphs, the corresponding edge-deletion problem PED(-&-pgr;) (edge-contraction problem PEC(-&-pgr;), resp.) is defined as follows: Given a graph G, find a set of edges of minimum cardinality whose deletion (contraction, resp.) results in a graph satisfying property -&-pgr;. In this paper we show that the edge-deletion problem PED (-&-pgr;) (edge-contraction problem PEC (-&-pgr;), resp.) is NP-hard if -&-pgr; is hereditary on subgraphs (contractions, resp.) and is determined by the 3-connected components.

[1]  Robert E. Tarjan,et al.  Dividing a Graph into Triconnected Components , 1973, SIAM J. Comput..

[2]  Alfred V. Aho,et al.  The Design and Analysis of Computer Algorithms , 1974 .

[3]  Stephen A. Cook,et al.  The complexity of theorem-proving procedures , 1971, STOC.

[4]  Mihalis Yannakakis,et al.  Node-and edge-deletion NP-complete problems , 1978, STOC.

[5]  David S. Johnson,et al.  Computers and Intractability: A Guide to the Theory of NP-Completeness , 1978 .

[6]  Richard M. Karp,et al.  On the Computational Complexity of Combinatorial Problems , 1975, Networks.

[7]  Akira Nakamura,et al.  On the removal of forbidden graphs by edge-deletion or by edge-contraction , 1981, Discret. Appl. Math..

[8]  John M. Lewis,et al.  The Node-Deletion Problem for Hereditary Properties is NP-Complete , 1980, J. Comput. Syst. Sci..

[9]  W. T. Tutte Connectivity in graphs , 1966 .

[10]  Narsingh Deo,et al.  Node-Deletion NP-Complete Problems , 1979, SIAM J. Comput..

[11]  Mihalis Yannakakis,et al.  Node-Deletion Problems on Bipartite Graphs , 1981, SIAM J. Comput..

[12]  David S. Johnson,et al.  The Rectilinear Steiner Tree Problem is NP Complete , 1977, SIAM Journal of Applied Mathematics.

[13]  Mihalis Yannakakis,et al.  Edge-Deletion Problems , 1981, SIAM J. Comput..

[14]  Akira Nakamura,et al.  On the NP-hardness of edge-deletion and -contraction problems , 1983, Discret. Appl. Math..

[15]  Mihalis Yannakakis,et al.  The Effect of a Connectivity Requirement on the Complexity of Maximum Subgraph Problems , 1979, JACM.

[16]  Frank Harary,et al.  Graph Theory , 2016 .