A novel approach for salient image regions detection and description

This paper proposes a new algorithm for visual landmarks detection and description. The detection is achieved using a hierarchical grouping mechanism, which combines a color contrast measure defined between regions with internal region descriptors and with attributes of the shared boundary. This detector reliably finds the same salient regions under different viewing conditions. Then, geometrically and photometrically normalized regions are characterized by a kernel-based descriptor. This descriptor is rotation-invariant and robust against noise. Several tests are conducted in order to compare the proposed approach with other similar approaches. Experimental results prove that the performance of our proposal is high in terms of computational consuming and visual landmark detection and description abilities.

[1]  C. Koch,et al.  A saliency-based search mechanism for overt and covert shifts of visual attention , 2000, Vision Research.

[2]  Laurent Itti,et al.  Real-time high-performance attention focusing in outdoors color video streams , 2002, IS&T/SPIE Electronic Imaging.

[3]  Daniel C. Asmar,et al.  Tree Trunks as Landmarks for Outdoor Vision SLAM , 2006, 2006 Conference on Computer Vision and Pattern Recognition Workshop (CVPRW'06).

[4]  James J. Little,et al.  /spl sigma/SLAM: stereo vision SLAM using the Rao-Blackwellised particle filter and a novel mixture proposal distribution , 2006, Proceedings 2006 IEEE International Conference on Robotics and Automation, 2006. ICRA 2006..

[5]  Laurent Itti,et al.  Ieee Transactions on Pattern Analysis and Machine Intelligence 1 Rapid Biologically-inspired Scene Classification Using Features Shared with Visual Attention , 2022 .

[6]  Cordelia Schmid,et al.  A Comparison of Affine Region Detectors , 2005, International Journal of Computer Vision.

[7]  Sarah Walker,et al.  Ultra-rapid categorization requires visual attention: Scenes with multiple foreground objects. , 2008, Journal of vision.

[8]  Danica Kragic,et al.  A framework for vision based bearing only 3D SLAM , 2006, Proceedings 2006 IEEE International Conference on Robotics and Automation, 2006. ICRA 2006..

[9]  S Ullman,et al.  Shifts in selective visual attention: towards the underlying neural circuitry. , 1985, Human neurobiology.

[10]  Henrik I. Christensen,et al.  Attentional Landmark Selection for Visual SLAM , 2006, 2006 IEEE/RSJ International Conference on Intelligent Robots and Systems.

[11]  Yll Haxhimusa,et al.  Segmentation Graph Hierarchies , 2004, SSPR/SPR.

[12]  Ki-Sang Hong,et al.  Vision-based simultaneous localization and mapping with two cameras , 2005, 2005 IEEE/RSJ International Conference on Intelligent Robots and Systems.

[13]  Robert B. Fisher,et al.  Object-based visual attention for computer vision , 2003, Artif. Intell..

[14]  David G. Lowe,et al.  Distinctive Image Features from Scale-Invariant Keypoints , 2004, International Journal of Computer Vision.

[15]  Henrik I. Christensen,et al.  Graphical SLAM using vision and the measurement subspace , 2005, 2005 IEEE/RSJ International Conference on Intelligent Robots and Systems.

[16]  Francisco Sandoval Hernández,et al.  Perception-Based Image Segmentation Using the Bounded Irregular Pyramid , 2007, DAGM-Symposium.

[17]  A. Treisman,et al.  A feature-integration theory of attention , 1980, Cognitive Psychology.

[18]  Jean-Michel Jolion,et al.  A test to control a region growing process within a hierarchical graph , 2003, Pattern Recognit..

[19]  Yan Ke,et al.  PCA-SIFT: a more distinctive representation for local image descriptors , 2004, CVPR 2004.

[20]  Francisco Sandoval Hernández,et al.  Bounded irregular pyramid: a new structure for color image segmentation , 2004, Pattern Recognit..

[21]  Cordelia Schmid,et al.  A Performance Evaluation of Local Descriptors , 2005, IEEE Trans. Pattern Anal. Mach. Intell..

[22]  Iain D. Gilchrist,et al.  Visual correlates of fixation selection: effects of scale and time , 2005, Vision Research.

[23]  Yll Haxhimusa,et al.  Constructing Stochastic Pyramids by MIDES - Maximal Independent Directed Edge Set , 2003, GbRPR.

[24]  James J. Little,et al.  Vision-based global localization and mapping for mobile robots , 2005, IEEE Transactions on Robotics.

[25]  Cordelia Schmid,et al.  An Affine Invariant Interest Point Detector , 2002, ECCV.

[26]  Pascal Bertolino,et al.  Similarity-based and perception-based image segmentation , 2005, IEEE International Conference on Image Processing 2005.

[27]  Luc Van Gool,et al.  Color-Based Object Tracking in Multi-camera Environments , 2003, DAGM-Symposium.

[28]  Chris Harris,et al.  Geometry from visual motion , 1993 .

[29]  Myung Jin Chung,et al.  Absolute Stereo SFM without Stereo Correspondence for Vision Based SLAM , 2005, Proceedings of the 2005 IEEE International Conference on Robotics and Automation.

[30]  Stepán Obdrzálek,et al.  Object Recognition Using Local Affine Frames on Maximally Stable Extremal Regions , 2006, Toward Category-Level Object Recognition.

[31]  Paul Newman,et al.  SLAM-Loop Closing with Visually Salient Features , 2005, Proceedings of the 2005 IEEE International Conference on Robotics and Automation.

[32]  Francisco Sandoval Hernández,et al.  Real-time object tracking using bounded irregular pyramids , 2007, Pattern Recognit. Lett..

[33]  David G. Lowe,et al.  Object recognition from local scale-invariant features , 1999, Proceedings of the Seventh IEEE International Conference on Computer Vision.

[34]  In-So Kweon,et al.  Robust Invariant Features for Object Recognition and Mobile Robot Navigation , 2005, MVA.

[35]  Pietro Perona,et al.  Graph-Based Visual Saliency , 2006, NIPS.

[36]  Francisco Sandoval Hernández,et al.  Data-and Model-driven Attention Mechanism for Autonomous Visual Landmark Acquisition , 2005, Proceedings of the 2005 IEEE International Conference on Robotics and Automation.

[37]  John K. Tsotsos,et al.  Saliency Based on Information Maximization , 2005, NIPS.

[38]  Andreas Zell,et al.  Localization of mobile robots with omnidirectional vision using Particle Filter and iterative SIFT , 2006, Robotics Auton. Syst..

[39]  Francisco Sandoval Hernández,et al.  The Construction of Bounded Irregular Pyramids with a Union-Find Decimation Process , 2007, GbRPR.

[40]  Luc Van Gool,et al.  SURF: Speeded Up Robust Features , 2006, ECCV.

[41]  Carlo Tomasi,et al.  Good features to track , 1994, 1994 Proceedings of IEEE Conference on Computer Vision and Pattern Recognition.

[42]  Jiri Matas,et al.  Robust wide-baseline stereo from maximally stable extremal regions , 2004, Image Vis. Comput..

[43]  Heinz Hügli,et al.  Robot self-localization using visual attention , 2005, 2005 International Symposium on Computational Intelligence in Robotics and Automation.

[44]  Luc Brun,et al.  Construction of Combinatorial Pyramids , 2003, GbRPR.

[45]  James J. Little,et al.  Mobile Robot Localization and Mapping with Uncertainty using Scale-Invariant Visual Landmarks , 2002, Int. J. Robotics Res..

[46]  David W. Murray,et al.  Simultaneous Localization and Map-Building Using Active Vision , 2002, IEEE Trans. Pattern Anal. Mach. Intell..

[47]  Ian Horswill,et al.  Polly: A Vision-Based Artificial Agent , 1993, AAAI.

[48]  Hans P. Morevec Towards automatic visual obstacle avoidance , 1977, IJCAI 1977.

[49]  Bärbel Mertsching,et al.  Color Saliency and Inhibition Using Static and Dynamic Scenes in Region Based Visual Attention , 2008, WAPCV.

[50]  Leslie J. Kitchen,et al.  Soft image segmentation by weighted linked pyramid , 2001, Pattern Recognit. Lett..

[51]  Nuno Vasconcelos,et al.  On the plausibility of the discriminant center-surround hypothesis for visual saliency. , 2008, Journal of vision.

[52]  Joachim Hertzberg,et al.  Indoor and outdoor localization for fast mobile robots , 2004, 2004 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS) (IEEE Cat. No.04CH37566).

[53]  Hongbin Zha,et al.  Coarse-to-fine vision-based localization by indexing scale-Invariant features , 2006, IEEE Transactions on Systems, Man, and Cybernetics, Part B (Cybernetics).

[54]  Christopher G. Harris,et al.  A Combined Corner and Edge Detector , 1988, Alvey Vision Conference.

[55]  C. Eriksen,et al.  Allocation of attention in the visual field. , 1985, Journal of experimental psychology. Human perception and performance.

[56]  Wan Kyun Chung,et al.  Data Association Using Visual Object Recognition for EKF-SLAM in Home Environment , 2006, 2006 IEEE/RSJ International Conference on Intelligent Robots and Systems.

[57]  Francisco Sandoval Hernández,et al.  Pyramid segmentation algorithms revisited , 2006, Pattern Recognit..

[58]  Dorin Comaniciu,et al.  Kernel-Based Object Tracking , 2003, IEEE Trans. Pattern Anal. Mach. Intell..

[59]  Giulio Sandini,et al.  A Proto-object Based Visual Attention Model , 2008, WAPCV.

[60]  Kyoung Mu Lee,et al.  CV-SLAM: a new ceiling vision-based SLAM technique , 2005, 2005 IEEE/RSJ International Conference on Intelligent Robots and Systems.

[61]  Atsuto Maki,et al.  Attentional Scene Segmentation: Integrating Depth and Motion , 2000, Comput. Vis. Image Underst..

[62]  Frédéric Lerasle,et al.  Visual landmarks detection and recognition for mobile robot navigation , 2003, 2003 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 2003. Proceedings..

[63]  Christof Koch,et al.  Modeling attention to salient proto-objects , 2006, Neural Networks.