Discrete elastic rods

We present a discrete treatment of adapted framed curves, parallel transport, and holonomy, thus establishing the language for a discrete geometric model of thin flexible rods with arbitrary cross section and undeformed configuration. Our approach differs from existing simulation techniques in the graphics and mechanics literature both in the kinematic description---we represent the material frame by its angular deviation from the natural Bishop frame---as well as in the dynamical treatment---we treat the centerline as dynamic and the material frame as quasistatic. Additionally, we describe a manifold projection method for coupling rods to rigid-bodies and simultaneously enforcing rod inextensibility. The use of quasistatics and constraints provides an efficient treatment for stiff twisting and stretching modes; at the same time, we retain the dynamic bending of the centerline and accurately reproduce the coupling between bending and twisting modes. We validate the discrete rod model via quantitative buckling, stability, and coupled-mode experiments, and via qualitative knot-tying comparisons.

[1]  F. B. Fuller The writhing number of a space curve. , 1971, Proceedings of the National Academy of Sciences of the United States of America.

[2]  B. Jeffreys The variational principles of mechanics (4th edition), by Cornelius Lanczos. Pp xxix, 418. £4·50. 1970 (University of Toronto Press) , 1973, The Mathematical Gazette.

[3]  F. B. Fuller Decomposition of the linking number of a closed ribbon: A problem from molecular biology. , 1978, Proceedings of the National Academy of Sciences of the United States of America.

[4]  J. Troutman Variational Principles in Mechanics , 1983 .

[5]  J. Maddocks Stability of nonlinearly elastic rods , 1984 .

[6]  John C. Platt,et al.  Elastically deformable models , 1987, SIGGRAPH.

[7]  F. A. Seiler,et al.  Numerical Recipes in C: The Art of Scientific Computing , 1989 .

[8]  W. Olson,et al.  Finite element analysis of DNA supercoiling , 1993 .

[9]  J. Maddocks,et al.  Conservation laws in the dynamics of rods , 1994 .

[10]  R. S. Falk,et al.  Convergence of a second-order scheme for the nonlinear dynamical equations of elastic rods , 1995 .

[11]  Langer,et al.  Nonlinear dynamics of stiff polymers. , 1995, Physical review letters.

[12]  Joel Langer,et al.  Lagrangian Aspects of the Kirchhoff Elastic Rod , 1996, SIAM Rev..

[13]  I. Klapper Biological Applications of the Dynamics of Twisted Elastic Rods , 1996 .

[14]  M. Tabor,et al.  Spontaneous Helix Hand Reversal and Tendril Perversion in Climbing Plants , 1998 .

[15]  A. Bobenko,et al.  Discrete Time Lagrangian Mechanics on Lie Groups,¶with an Application to the Lagrange Top , 1999 .

[16]  J.M.T. Thompson,et al.  Helical and Localised Buckling in Twisted Rods: A Unified Analysis of the Symmetric Case , 2000 .

[17]  M. Rubin Cosserat Theories: Shells, Rods and Points , 2000 .

[18]  Dinesh K. Pai,et al.  STRANDS: Interactive Simulation of Thin Solids using Cosserat Models , 2002, Comput. Graph. Forum.

[19]  Lydia E. Kavraki,et al.  Simulated knot tying , 2002, Proceedings 2002 IEEE International Conference on Robotics and Automation (Cat. No.02CH37292).

[20]  Jean-Claude Latombe,et al.  Real-time knot-tying simulation , 2004, The Visual Computer.

[21]  J. Thompson,et al.  Instability and self-contact phenomena in the writhing of clamped rods , 2003 .

[22]  E. Hairer,et al.  Geometric Numerical Integration: Structure Preserving Algorithms for Ordinary Differential Equations , 2004 .

[23]  John Hart,et al.  ACM Transactions on Graphics , 2004, SIGGRAPH 2004.

[24]  Chun-Chi Lin,et al.  On the Geometric Flow of Kirchhoff Elastic Rods , 2004, SIAM J. Appl. Math..

[25]  R. de Vries Evaluating changes of writhe in computer simulations of supercoiled DNA. , 2005, The Journal of chemical physics.

[26]  Hyeong-Seok Ko,et al.  Simulating complex hair with robust collision handling , 2005, SCA '05.

[27]  Andrew J. Hanson,et al.  Visualizing quaternions , 2005, SIGGRAPH Courses.

[28]  Stephane Cotin,et al.  Interactive physically-based simulation of catheter and guidewire , 2006, Comput. Graph..

[29]  Elmar Schömer,et al.  Interactive simulation of one-dimensional flexible parts , 2006, SPM '06.

[30]  A. Goriely Twisted Elastic Rings and the Rediscoveries of Michell's Instability , 2006 .

[31]  Marie-Paule Cani,et al.  Super-helices for predicting the dynamics of natural hair , 2006, SIGGRAPH 2006.

[32]  Sunil Hadap,et al.  Oriented Strands-dynamics of stiff multi-body system , 2006 .

[33]  Steve Marschner,et al.  A Survey on Hair Modeling: Styling, Simulation, and Rendering , 2007, IEEE Transactions on Visualization and Computer Graphics.

[34]  Eitan Grinspun,et al.  To appear in the ACM SIGGRAPH conference proceedings Efficient Simulation of Inextensible Cloth , 2007 .

[35]  Steve Marschner,et al.  Strands and hair: modeling, animation, and rendering , 2007, SIGGRAPH Courses.

[36]  Jian J. Zhang,et al.  Cosserat‐beam‐based dynamic response modelling , 2007, Comput. Animat. Virtual Worlds.

[37]  山田 祐,et al.  Open Dynamics Engine を用いたスノーボードロボットシミュレータの開発 , 2007 .

[38]  B. Audoly,et al.  Elastic knots. , 2007, Physical review letters.

[39]  J. Spillmann,et al.  CoRdE: Cosserat rod elements for the dynamic simulation of one-dimensional elastic objects , 2007, SCA '07.

[40]  E. Grinspun Discrete differential geometry : An applied introduction , 2008, SIGGRAPH 2008.

[41]  N. Perkins,et al.  Non-linear Dynamic Intertwining of Rods With Self-Contact , 2007, math-ph/0701017.

[42]  Laurent Grisoni,et al.  Geometrically exact dynamic splines , 2008, Comput. Aided Des..

[43]  Matthias Teschner,et al.  An Adaptive Contact Model for the Robust Simulation of Knots , 2008, Comput. Graph. Forum.