Fixed Point Results for Fractal Generation of Complex Polynomials Involving Sine Function via Non-Standard Iterations

Due to the uniqueness and self-similarity, fractals became most attractive and charming research field. Nowadays researchers use different techniques to generate beautiful fractals for a complex polynomial <inline-formula> <tex-math notation="LaTeX">$z^{n}+c$ </tex-math></inline-formula>. This article demonstrates some fixed point results for a sine function (i.e. <inline-formula> <tex-math notation="LaTeX">$\sin (z^{n}) +c$ </tex-math></inline-formula>) via non-standard iterations (i.e. Mann, Ishikawa and Noor iterations etc.). Since each two steps iteration (i.e. Ishikawa and S iterations) or each three steps iteration (i.e. Noor, CR and SP iterations) have same escape radii for any complex polynomial, so we use these results for S, CR and SP iterations also to apply for the generation of Julia and Mandelbrot sets with <inline-formula> <tex-math notation="LaTeX">$\sin (z^{n}) +c$ </tex-math></inline-formula>. At some fixed input parameters, we observe the engrossing behavior of Julia and Mandelbrot sets for different <inline-formula> <tex-math notation="LaTeX">$n$ </tex-math></inline-formula>.

[1]  Robert L. Devaney,et al.  A First Course In Chaotic Dynamical Systems: Theory And Experiment , 1993 .

[2]  Benoit B. Mandelbrot,et al.  Fractal Geometry of Nature , 1984 .

[3]  Agnieszka Lisowska,et al.  Biomorphs via Modified Iterations , 2016 .

[4]  M. Noor New approximation schemes for general variational inequalities , 2000 .

[5]  Suthep Suantai,et al.  On the rate of convergence of Mann, Ishikawa, Noor and SP-iterations for continuous functions on an arbitrary interval , 2011, J. Comput. Appl. Math..

[6]  Mamta Rani,et al.  Effect of Stochastic Noise on Superior Julia Sets , 2009, Journal of Mathematical Imaging and Vision.

[7]  Shin Min Kang,et al.  Fractal Generation via CR Iteration Scheme With S-Convexity , 2019, IEEE Access.

[8]  Nikesh Bajaj,et al.  An exploration of fractal art in fashion design , 2013, 2013 International Conference on Communication and Signal Processing.

[9]  Shin Min Kang,et al.  NEW TRICORNS AND MULTICORNS ANTIFRACTALS IN JUNGCK MANN ORBIT , 2016 .

[10]  Oussama Khatib,et al.  Real-Time Obstacle Avoidance for Manipulators and Mobile Robots , 1985, Autonomous Robot Vehicles.

[11]  Nicoletta Sala,et al.  Complexity Science, Living Systems, and Reflexing Interfaces: New Models and Perspectives , 2012 .

[12]  Lyman P. Hurd,et al.  Fractal image compression , 1993 .

[13]  P. J. Rippon,et al.  On the structure of the Mandelbar set , 1989 .

[14]  Renu Chugh,et al.  Strong Convergence of a New Three Step Iterative Scheme in Banach Spaces , 2012 .

[15]  Shin Min Kang,et al.  New Fixed Point Results for Fractal Generation in Jungck Noor Orbit with -Convexity , 2015 .

[16]  Rudan Xu,et al.  An Image Encryption Algorithm Utilizing Julia Sets and Hilbert Curves , 2014, PloS one.

[17]  Shin Min Kang,et al.  Tricorns and Multicorns of -Iteration Scheme , 2015 .

[18]  Faisal Ali,et al.  Fractals through Modified Iteration Scheme , 2016 .

[19]  Vasileios Drakopoulos,et al.  An overview of parallel visualisation methods for Mandelbrot and Julia sets , 2003, Comput. Graph..

[20]  Shin Min Kang,et al.  Mandelbrot and Julia Sets via Jungck–CR Iteration With $s$ –Convexity , 2019, IEEE Access.

[21]  Bhagwati Prasad,et al.  Dynamics of iterative schemes for quadratic polynomial , 2017 .

[22]  S. Kumar,et al.  Public Key Cryptographic System Using Mandelbrot Sets , 2006, MILCOM 2006 - 2006 IEEE Military Communications conference.

[23]  Guangxing Wang,et al.  COMPOSED ACCELERATED ESCAPE TIME ALGORITHM TO CONSTRUCT THE GENERAL MANDELBROT SETS , 2001 .

[24]  Zheng Zhou,et al.  A Chaos-Based Image Encryption Technique Utilizing Hilbert Curves and H-Fractals , 2019, IEEE Access.

[25]  Shin Min Kang,et al.  Fractal Generation in Modified Jungck–S Orbit , 2019, IEEE Access.

[26]  Robert L. Devaney,et al.  A Generalized Version of the McMullen Domain , 2008, Int. J. Bifurc. Chaos.

[27]  W. R. Mann,et al.  Mean value methods in iteration , 1953 .

[28]  Shin Min Kang,et al.  Tricorns and Multicorns in Noor Orbit With s-Convexity , 2019, IEEE Access.

[29]  Jing Liu,et al.  Fixed Point Results for Fractal Generation in Extended Jungck–SP Orbit , 2019, IEEE Access.

[30]  Mamta Rani,et al.  Superior Mandelbrot Set , 2004 .

[31]  N. Cohen,et al.  Fractal antenna applications in wireless telecommunications , 1997, Professional Program Proceedings. Electronic Industries Forum of New England.

[32]  Bhagwati Prasad,et al.  Fractals via Ishikawa Iteration , 2011 .

[33]  Muhammad Tanveer,et al.  Boundaries of Filled Julia Sets in Generalized Jungck Mann Orbit , 2019, IEEE Access.

[34]  Renu Chugh,et al.  Julia sets and Mandelbrot sets in Noor orbit , 2014, Appl. Math. Comput..

[35]  Renu Chugh,et al.  Generation of New Fractals via SP Orbit with s-Convexity , 2017 .

[36]  C A Pickover,et al.  Biom orphs: Computer Displays of Biological Forms Generated from Mathematical Feedback Loops , 1986, Comput. Graph. Forum.

[37]  Valery V. Strotov,et al.  Object distance estimation algorithm for real-time FPGA-based stereoscopic vision system , 2018, Remote Sensing.

[38]  S. Ishikawa Fixed points by a new iteration method , 1974 .

[39]  Theodore Kim,et al.  Quaternion Julia Set Shape Optimization , 2015, SGP '15.

[40]  M. Rani,et al.  Superior Julia Set , 2004 .