Thalamic relay functions.

The lateral geniculate nucleus is the best understood thalamic relay. Only 5-10% of the inputs to geniculate relay cells derive from retina, which is the driving input. The rest, being modulatory, derive from local inhibitory inputs, descending inputs from visual cortex, and ascending inputs from brainstem. The nonretinal, modulatory inputs, which form the vast majority, dynamically control the nature of the geniculate relay. Among other actions, these modulatory inputs regulate membrane properties of relay cells and thereby control their mode of response to retinal inputs, and this dramatically affects the nature of information relayed to cortex. Our studies of the lateral geniculate nucleus of the cat lead to the speculation that this dynamic control depends on the animal's behavioral state and represents the neuronal substrate for many forms of visual attention. The lateral geniculate nucleus is a first-order relay, because it relays subcortical (i.e. retinal) information to cortex for the first time. In contrast, the other main thalamic relay of visual information, the pulvinar (and lateral posterior nucleus in carnivores), is largely a higher-order relay, since much of it seems to relay information from one cortical area to another. Much more corticocortical processing may involve these 're-entry' routes than has been hitherto appreciated. If so, the thalamus sits at an indispensable position for corticocortical processing.

[1]  S. Sherman,et al.  Relative distribution of synapses in the A‐laminae of the lateral geniculate nucleus of the cat , 2000, The Journal of comparative neurology.

[2]  F. Plum Handbook of Physiology. , 1960 .

[3]  J. Swets The Relative Operating Characteristic in Psychology , 1973, Science.

[4]  K. Martin,et al.  Termination of the geniculocortical projection in the striate cortex of macaque monkey: A quantitative immunoelectron microscopic study , 2000, The Journal of comparative neurology.

[5]  D C Van Essen,et al.  Information processing in the primate visual system: an integrated systems perspective. , 1992, Science.

[6]  D. M. Green,et al.  Signal detection theory and psychophysics , 1966 .

[7]  T. Wiesel,et al.  Functional architecture of macaque monkey visual cortex , 1977 .

[8]  E. Kaplan,et al.  Dynamics of neurons in the cat lateral geniculate nucleus: in vivo electrophysiology and computational modeling. , 1995, Journal of neurophysiology.

[9]  D. McCormick Neurotransmitter actions in the thalamus and cerebral cortex and their role in neuromodulation of thalamocortical activity , 1992, Progress in Neurobiology.

[10]  R. Guillery Anatomical evidence concerning the role of the thalamus in corticocortical communication: a brief review. , 1995, Journal of anatomy.

[11]  T. Salt,et al.  Modulation of Sensory and Excitatory Amino Acid Responses by Nitric Oxide Donors and Glutathione in the Ventrobasal Thalamus of the Rat , 1997, The European journal of neuroscience.

[12]  D. Hubel,et al.  Ferrier lecture - Functional architecture of macaque monkey visual cortex , 1977, Proceedings of the Royal Society of London. Series B. Biological Sciences.

[13]  J. C. Anderson,et al.  Polyneuronal innervation of spiny stellate neurons in cat visual cortex , 1994, The Journal of comparative neurology.

[14]  R. Nicoll,et al.  Functional comparison of neurotransmitter receptor subtypes in mammalian central nervous system. , 1990, Physiological reviews.

[15]  R. Duvoisin,et al.  The metabotropic glutamate receptors: Structure and functions , 1995, Neuropharmacology.

[16]  F. Lenz,et al.  Neuronal activity in the region of the thalamic principal sensory nucleus (ventralis caudalis) in patients with pain following amputations , 1998, Neuroscience.

[17]  S. Zeki A vision of the brain , 1993 .

[18]  Michael C. Crair,et al.  Silent Synapses during Development of Thalamocortical Inputs , 1997, Neuron.

[19]  R. Guillery,et al.  Exploring the Thalamus , 2000 .

[20]  D. Ferster,et al.  Orientation selectivity of thalamic input to simple cells of cat visual cortex , 1996, Nature.

[21]  R W Guillery,et al.  A study of Golgi preparations from the dorsal lateral geniculate nucleus of the adult cat , 1966, The Journal of comparative neurology.

[22]  R. Reid,et al.  The processing and encoding of information in the visual cortex , 1996, Current Opinion in Neurobiology.

[23]  R. Guillery,et al.  On the actions that one nerve cell can have on another: distinguishing "drivers" from "modulators". , 1998, Proceedings of the National Academy of Sciences of the United States of America.

[24]  W. Levick,et al.  Sustained and transient neurones in the cat's retina and lateral geniculate nucleus , 1971, The Journal of physiology.

[25]  D. McCormick,et al.  Sleep and arousal: thalamocortical mechanisms. , 1997, Annual review of neuroscience.

[26]  C. Rivadulla,et al.  Sight and insight – on the physiological role of nitric oxide in the visual system , 1999, Trends in Neurosciences.

[27]  W. Guido,et al.  Burst responses in thalamic relay cells of the awake behaving cat. , 1995, Journal of neurophysiology.

[28]  R. Llinás,et al.  Ionic basis for the electro‐responsiveness and oscillatory properties of guinea‐pig thalamic neurones in vitro. , 1984, The Journal of physiology.

[29]  D. McCormick,et al.  A model of the electrophysiological properties of thalamocortical relay neurons. , 1992, Journal of neurophysiology.

[30]  C. Koch,et al.  Encoding of visual information by LGN bursts. , 1999, Journal of neurophysiology.

[31]  S. Sherman,et al.  Relative contributions of burst and tonic responses to the receptive field properties of lateral geniculate neurons in the cat. , 1992, Journal of neurophysiology.

[32]  M. Nicolelis,et al.  Sensorimotor encoding by synchronous neural ensemble activity at multiple levels of the somatosensory system. , 1995, Science.

[33]  S. Sherman,et al.  Effects of membrane voltage on receptive field properties of lateral geniculate neurons in the cat: contributions of the low-threshold Ca2+ conductance. , 1992, Journal of neurophysiology.

[34]  S. Sherman,et al.  Response latencies of cells in the cat's lateral geniculate nucleus are less variable during burst than tonic firing , 1998, Visual Neuroscience.

[35]  S. Sherman,et al.  Receiver operating characteristic (ROC) analysis of neurons in the cat's lateral geniculate nucleus during tonic and burst response mode , 1995, Visual Neuroscience.

[36]  D. J. Felleman,et al.  Distributed hierarchical processing in the primate cerebral cortex. , 1991, Cerebral cortex.

[37]  D. Mott,et al.  The pharmacology and function of central GABAB receptors. , 1994, International review of neurobiology.

[38]  S. Murray Sherman,et al.  Dendritic Depolarization Efficiently Attenuates Low-Threshold Calcium Spikes in Thalamic Relay Cells , 2000, The Journal of Neuroscience.

[39]  P. Goldman-Rakic,et al.  Preface: Cerebral Cortex Has Come of Age , 1991 .

[40]  László Négyessy,et al.  Immunocytochemical Visualization of the mG1uR1 a Metabotropic Glutamate Receptor at Synapses of Corticothalamic Terminals Originating from Area 17 of the Rat , 1996, The European journal of neuroscience.

[41]  S. Sherman,et al.  Dual response modes in lateral geniculate neurons: Mechanisms and functions , 1996, Visual Neuroscience.

[42]  Neil A. Macmillan,et al.  Detection Theory: A User's Guide , 1991 .

[43]  J. Bockaert,et al.  Get receptive to metabotropic glutamate receptors , 1995, Current Opinion in Neurobiology.

[44]  R. Reid,et al.  Specificity of monosynaptic connections from thalamus to visual cortex , 1995, Nature.

[45]  R. Llinás,et al.  The functional states of the thalamus and the associated neuronal interplay. , 1988, Physiological reviews.

[46]  A. Destexhe,et al.  Dendritic Low-Threshold Calcium Currents in Thalamic Relay Cells , 1998, The Journal of Neuroscience.

[47]  H. Swadlow,et al.  The impact of 'bursting' thalamic impulses at a neocortical synapse , 2001, Nature Neuroscience.

[48]  T. Sejnowski,et al.  Thalamocortical oscillations in the sleeping and aroused brain. , 1993, Science.

[49]  S. Sherman,et al.  Relative numbers of cortical and brainstem inputs to the lateral geniculate nucleus. , 1997, Proceedings of the National Academy of Sciences of the United States of America.

[50]  R. Guillery,et al.  Functional organization of thalamocortical relays. , 1996, Journal of neurophysiology.

[51]  H. Pape,et al.  Nitric oxide controls oscillatory activity in thalamocortical neurons , 1992, Neuron.

[52]  K. D. Davis,et al.  A comparison of the burst activity of lateral thalamic neurons in chronic pain and non-pain patients , 1999, Pain.

[53]  M. Récasens,et al.  Excitatory Amino Acid Metabotropic Receptor Subtypes and Calcium Regulation , 1995, Annals of the New York Academy of Sciences.

[54]  D. Ferster,et al.  Strength and Orientation Tuning of the Thalamic Input to Simple Cells Revealed by Electrically Evoked Cortical Suppression , 1998, Neuron.

[55]  J Rinzel,et al.  Dynamics of Low-Threshold Spike Activation in Relay Neurons of the Cat Lateral Geniculate Nucleus , 2001, The Journal of Neuroscience.

[56]  S. Sherman,et al.  Burst and tonic firing in thalamic cells of unanesthetized, behaving monkeys , 2000, Visual Neuroscience.

[57]  R. Llinás,et al.  Electrophysiological properties of guinea‐pig thalamic neurones: an in vitro study. , 1984, The Journal of physiology.

[58]  D. A. Brown,et al.  Muscarinic mechanisms in nerve cells. , 1997, Life sciences.

[59]  J Rinzel,et al.  Current clamp and modeling studies of low-threshold calcium spikes in cells of the cat's lateral geniculate nucleus. , 1999, Journal of neurophysiology.

[60]  P. Adams,et al.  Visualization of calcium influx through channels that shape the burst and tonic firing modes of thalamic relay cells. , 1997, Journal of neurophysiology.