Can visual information encoded in cortical columns be decoded from magnetoencephalography data in humans?

It is a principal open question whether noninvasive imaging methods in humans can decode information encoded at a spatial scale as fine as the basic functional unit of cortex: cortical columns. We addressed this question in five magnetoencephalography (MEG) experiments by investigating a columnar-level encoded visual feature: contrast edge orientation. We found that MEG signals contained orientation-specific information as early as approximately 50 ms after stimulus onset even when controlling for confounds, such as overrepresentation of particular orientations, stimulus edge interactions, and global form-related signals. Theoretical modeling confirmed the plausibility of this empirical result. An essential consequence of our results is that information encoded in the human brain at the level of cortical columns should in general be accessible by multivariate analysis of electrophysiological signals.

[1]  David A. Tovar,et al.  Representational dynamics of object vision: the first 1000 ms. , 2013, Journal of vision.

[2]  Antigona Martínez,et al.  Source analysis of event-related cortical activity during visuo-spatial attention. , 2003, Cerebral cortex.

[3]  G. Orban,et al.  The organization of orientation selectivity throughout macaque visual cortex. , 2002, Cerebral cortex.

[4]  D. Hubel,et al.  Receptive fields and functional architecture of monkey striate cortex , 1968, The Journal of physiology.

[5]  R. Mansfield,et al.  Neural Basis of Orientation Perception in Primate Vision , 1974, Science.

[6]  R. Ilmoniemi,et al.  Magnetoencephalography-theory, instrumentation, and applications to noninvasive studies of the working human brain , 1993 .

[7]  Edward A Essock,et al.  A horizontal bias in human visual processing of orientation and its correspondence to the structural components of natural scenes. , 2004, Journal of vision.

[8]  J. Bullier Integrated model of visual processing , 2001, Brain Research Reviews.

[9]  E. G. Jones,et al.  Microcolumns in the cerebral cortex. , 2000, Proceedings of the National Academy of Sciences of the United States of America.

[10]  J. G. Axford,et al.  Source locations of pattern-specific components of human visual evoked potentials. II. Component of extrastriate cortical origin , 2004, Experimental Brain Research.

[11]  C. Tesche,et al.  Non-invasive imaging of neuronal population dynamics in human thalamus , 1996, Brain Research.

[12]  Essa Yacoub,et al.  High-field fMRI unveils orientation columns in humans , 2008, Proceedings of the National Academy of Sciences.

[13]  A. Proverbio,et al.  Early involvement of the temporal area in attentional selection of grating orientation: an ERP study. , 2002, Brain research. Cognitive brain research.

[14]  T. Bonhoeffer,et al.  Overrepresentation of horizontal and vertical orientation preferences in developing ferret area 17. , 1998, Proceedings of the National Academy of Sciences of the United States of America.

[15]  Damien J. Mannion,et al.  Orientation anisotropies in human visual cortex. , 2010, Journal of neurophysiology.

[16]  Wim Vanduffel,et al.  The Radial Bias: A Different Slant on Visual Orientation Sensitivity in Human and Nonhuman Primates , 2006, Neuron.

[17]  R. Leahy,et al.  Mapping human brain function with MEG and EEG: methods and validation , 2004, NeuroImage.

[18]  Andreas Bartels,et al.  Coding and binding of color and form in visual cortex. , 2010, Cerebral cortex.

[19]  Colin W. G. Clifford,et al.  Discrimination of the local orientation structure of spiral Glass patterns early in human visual cortex , 2009, NeuroImage.

[20]  Trichur Raman Vidyasagar,et al.  Orientation sensitivity of cat LGN neurones with and without inputs from visual cortical areas 17 and 18 , 2004, Experimental Brain Research.

[21]  Andrew D Huberman,et al.  Diverse Visual Features Encoded in Mouse Lateral Geniculate Nucleus , 2013, The Journal of Neuroscience.

[22]  S. Taulu,et al.  Suppression of Interference and Artifacts by the Signal Space Separation Method , 2003, Brain Topography.

[23]  P. O. Bishop,et al.  Binocular interaction on single units in cat striate cortex: Simultaneous stimulation by single moving slit with receptive fields in correspondence , 2004, Experimental Brain Research.

[24]  G. Barnes,et al.  Identifying spatially overlapping local cortical networks with MEG , 2009, Human brain mapping.

[25]  Victor A. F. Lamme The neurophysiology of figure-ground segregation in primary visual cortex , 1995, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[26]  R. Oostenveld,et al.  Nonparametric statistical testing of EEG- and MEG-data , 2007, Journal of Neuroscience Methods.

[27]  Richard M. Leahy,et al.  A comparison of random field theory and permutation methods for the statistical analysis of MEG data , 2005, NeuroImage.

[28]  E. Essock,et al.  An anisotropy of orientation-tuned suppression that matches the anisotropy of typical natural scenes. , 2009, Journal of vision.

[29]  Edward F. Ester,et al.  PSYCHOLOGICAL SCIENCE Research Article Stimulus-Specific Delay Activity in Human Primary Visual Cortex , 2022 .

[30]  Anina N. Rich,et al.  Induced and evoked neural correlates of orientation selectivity in human visual cortex , 2011, NeuroImage.

[31]  C. Koch,et al.  Latency and Selectivity of Single Neurons Indicate Hierarchical Processing in the Human Medial Temporal Lobe , 2008, The Journal of Neuroscience.

[32]  Nikolaus Kriegeskorte,et al.  What is the nature of the decodable neuromagnetic signal? MEG, Models, and Perception. , 2014 .

[33]  Y. Okada,et al.  Detection of magnetic evoked fields associated with synchronous population activities in the transverse CA1 slice of the guinea pig. , 1993, Journal of neurophysiology.

[34]  A. Moskowitz,et al.  Effect of stimulus orientation on the latency and amplitude of the VEP. , 1985, Investigative ophthalmology & visual science.

[35]  Pavan Ramkumar,et al.  Feature-Specific Information Processing Precedes Concerted Activation in Human Visual Cortex , 2013, The Journal of Neuroscience.

[36]  Jeremy Freeman,et al.  Coarse-Scale Biases for Spirals and Orientation in Human Visual Cortex , 2013, The Journal of Neuroscience.

[37]  F. Campbell,et al.  Electrophysiological evidence for the existence of orientation and size detectors in the human visual system , 1970, The Journal of physiology.

[38]  A. B. Bonds,et al.  Are primate lateral geniculate nucleus (LGN) cells really sensitive to orientation or direction? , 2002, Visual Neuroscience.

[39]  A. Leventhal,et al.  Signal timing across the macaque visual system. , 1998, Journal of neurophysiology.

[40]  L. Vaina,et al.  Mapping the signal‐to‐noise‐ratios of cortical sources in magnetoencephalography and electroencephalography , 2009, Human brain mapping.

[41]  N. Kriegeskorte,et al.  Perceptual similarity of visual patterns predicts dynamic neural activation patterns measured with MEG , 2015, NeuroImage.

[42]  Vivien A. Casagrande,et al.  Unequal representation of cardinal vs. oblique orientations in the middle temporal visual area , 2006, Proceedings of the National Academy of Sciences.

[43]  D H Brainard,et al.  The Psychophysics Toolbox. , 1997, Spatial vision.

[44]  G A Orban,et al.  Preferences for horizontal or vertical orientation in cat visual cortical neurones [proceedings]. , 1979, The Journal of physiology.

[45]  Anders M. Dale,et al.  Cortical Surface-Based Analysis I. Segmentation and Surface Reconstruction , 1999, NeuroImage.

[46]  G. Rees,et al.  Predicting the orientation of invisible stimuli from activity in human primary visual cortex , 2005, Nature Neuroscience.

[47]  C. Furmanski,et al.  An oblique effect in human primary visual cortex , 2000, Nature Neuroscience.

[48]  Paul R. Martin,et al.  Cortical-Like Receptive Fields in the Lateral Geniculate Nucleus of Marmoset Monkeys , 2013, The Journal of Neuroscience.

[49]  Fang Wang,et al.  Comparison of event-related potentials elicited by cardinal and oblique orientations with broad-band noise stimuli , 2012, Vision Research.

[50]  Edward A. Essock,et al.  Oblique stimuli are seen best (not worst!) in naturalistic broad-band stimuli: a horizontal effect , 2003, Vision Research.

[51]  Richard M. Leahy,et al.  Electromagnetic brain mapping , 2001, IEEE Signal Process. Mag..

[52]  Frank Tong,et al.  Attention alters orientation processing in the human lateral geniculate nucleus , 2015, Nature Neuroscience.

[53]  Scott L. Brincat,et al.  Dynamic Shape Synthesis in Posterior Inferotemporal Cortex , 2006, Neuron.

[54]  C. Blakemore,et al.  An analysis of orientation selectivity in the cat's visual cortex , 1974, Experimental Brain Research.

[55]  Victor A. F. Lamme,et al.  Contextual Modulation in Primary Visual Cortex , 1996, The Journal of Neuroscience.

[56]  Y. Okada,et al.  Contributions of principal neocortical neurons to magnetoencephalography and electroencephalography signals , 2006, The Journal of physiology.

[57]  Frank Tong,et al.  Radial bias is not necessary for orientation decoding , 2016, NeuroImage.

[58]  H. Shibasaki,et al.  Time-Varying Activation of Different Cytoarchitectonic Areas of the Human SI Cortex after Tibial Nerve Stimulation , 1996, NeuroImage.

[59]  Jascha D. Swisher,et al.  Multiscale Pattern Analysis of Orientation-Selective Activity in the Primary Visual Cortex , 2010, The Journal of Neuroscience.

[60]  P. Roelfsema,et al.  Automatic spread of attentional response modulation along Gestalt criteria in primary visual cortex , 2011, Nature Neuroscience.

[61]  Jeremy Freeman,et al.  Orientation Decoding Depends on Maps, Not Columns , 2011, The Journal of Neuroscience.

[62]  Gunnar Rätsch,et al.  An introduction to kernel-based learning algorithms , 2001, IEEE Trans. Neural Networks.

[63]  Z. Kourtzi,et al.  Neural coding of global form in the human visual cortex. , 2008, Journal of neurophysiology.

[64]  C. Dumouchel,et al.  3. Pressure atomiser: Hole breakup of the sheet , 2001 .

[65]  Minami Ito,et al.  Columns for visual features of objects in monkey inferotemporal cortex , 1992, Nature.

[66]  Christoph Braun,et al.  Can magnetoencephalography track the afferent information flow along white matter thalamo-cortical fibers? , 2012, NeuroImage.

[67]  Gerald Westheimer Anisotropies in peripheral vernier acuity. , 2005, Spatial vision.

[68]  V Zemon,et al.  Orientational anisotropy in the human visual system: an evoked potential and psychophysical study. , 1983, The International journal of neuroscience.

[69]  R. Freeman,et al.  Oblique effect: a neural basis in the visual cortex. , 2003, Journal of neurophysiology.

[70]  D Purves,et al.  The distribution of oriented contours in the real world. , 1998, Proceedings of the National Academy of Sciences of the United States of America.

[71]  D. Hubel,et al.  Receptive fields of single neurones in the cat's striate cortex , 1959, The Journal of physiology.

[72]  Nikolaus Kriegeskorte,et al.  fMRI orientation decoding in V1 does not require global maps or globally coherent orientation stimuli , 2012, Front. Psychol..

[73]  Keiji Tanaka,et al.  Optical Imaging of Functional Organization in the Monkey Inferotemporal Cortex , 1996, Science.

[74]  Nikolaus Kriegeskorte,et al.  How does an fMRI voxel sample the neuronal activity pattern: Compact-kernel or complex spatiotemporal filter? , 2010, NeuroImage.

[75]  Richard M. Leahy,et al.  Brainstorm: A User-Friendly Application for MEG/EEG Analysis , 2011, Comput. Intell. Neurosci..

[76]  Radoslaw Martin Cichy,et al.  Resolving human object recognition in space and time , 2014, Nature Neuroscience.

[77]  T. Shou,et al.  Enhancement of oblique effect in the cat’s primary visual cortex via orientation preference shifting induced by excitatory feedback from higher-order cortical area 21a , 2007, Neuroscience.

[78]  Thomas E. Nichols,et al.  Nonparametric permutation tests for functional neuroimaging: A primer with examples , 2002, Human brain mapping.

[79]  A. Grinvald,et al.  Relationships between orientation-preference pinwheels, cytochrome oxidase blobs, and ocular-dominance columns in primate striate cortex. , 1992, Proceedings of the National Academy of Sciences of the United States of America.

[80]  Masaaki Kawahashi,et al.  Renovation of Journal of Visualization , 2010, J. Vis..

[81]  J. Serences,et al.  Near-Real-Time Feature-Selective Modulations in Human Cortex , 2013, Current Biology.

[82]  Gerald Westheimer,et al.  The distribution of preferred orientations in the peripheral visual field , 2003, Vision Research.

[83]  Nikos K Logothetis,et al.  Interpreting the BOLD signal. , 2004, Annual review of physiology.

[84]  S. Taulu,et al.  Spatiotemporal signal space separation method for rejecting nearby interference in MEG measurements , 2006, Physics in medicine and biology.

[85]  F. Tong,et al.  Decoding the visual and subjective contents of the human brain , 2005, Nature Neuroscience.

[86]  Moritz Grosse-Wentrup,et al.  Multisubject Learning for Common Spatial Patterns in Motor-Imagery BCI , 2011, Comput. Intell. Neurosci..

[87]  Joel Z. Leibo,et al.  The dynamics of invariant object recognition in the human visual system. , 2014, Journal of neurophysiology.

[88]  Thomas A Carlson,et al.  Orientation Decoding in Human Visual Cortex: New Insights from an Unbiased Perspective , 2014, The Journal of Neuroscience.

[89]  N. Kanwisher,et al.  Interpreting fMRI data: maps, modules and dimensions , 2008, Nature Reviews Neuroscience.

[90]  F. Campbell,et al.  Neurophysiological Localization of the Vertical and Horizontal Visual Coordinates in Man , 1970, Science.

[91]  S. Hillyard,et al.  Identification of early visual evoked potential generators by retinotopic and topographic analyses , 1994 .

[92]  R. Hari,et al.  Coinciding early activation of the human primary visual cortex and anteromedial cuneus , 2001, Proceedings of the National Academy of Sciences of the United States of America.

[93]  J. Mäkelä,et al.  Sources of auditory brainstem responses revisited: Contribution by magnetoencephalography , 2009, Human brain mapping.