Grid-Based Access Scheduling for Mobile Data Intensive Sensor Networks

We introduce a distributed grid-based scheduling access scheme that mitigates high data loss in data intensive sensor networks. Our approach alleviates transmission collisions by applying virtual grids and adopting Latin Squares Characteristic to time slot assignments. We demonstrate that our technique efficiently handles sensor mobility with acceptable data loss and low overhead.

[1]  G. Mullen,et al.  Discrete Mathematics Using Latin Squares , 1998, The Mathematical Gazette.

[2]  Fabian Kuhn,et al.  Worst-Case optimal and average-case efficient geometric ad-hoc routing , 2003, MobiHoc '03.

[3]  Deborah Estrin,et al.  GPS-less low-cost outdoor localization for very small devices , 2000, IEEE Wirel. Commun..

[4]  Christiaan J. J. Paredis,et al.  Millibots: Small Distributed Robots for Surveillance and Mapping , 2000 .

[5]  Deborah Estrin,et al.  A wireless sensor network For structural monitoring , 2004, SenSys '04.

[6]  C. Siva Ram Murthy,et al.  Ad Hoc Wireless Networks: Architectures and Protocols , 2004 .

[7]  Injong Rhee,et al.  DRAND: Distributed Randomized TDMA Scheduling for Wireless Ad Hoc Networks , 2006, IEEE Transactions on Mobile Computing.

[8]  Haibo Zhang,et al.  Distributed Tuning Attempt Probability for Data Gathering in Random Access Wireless Sensor Networks , 2006, 20th International Conference on Advanced Information Networking and Applications - Volume 1 (AINA'06).

[9]  L. El Ghaoui,et al.  Convex position estimation in wireless sensor networks , 2001, Proceedings IEEE INFOCOM 2001. Conference on Computer Communications. Twentieth Annual Joint Conference of the IEEE Computer and Communications Society (Cat. No.01CH37213).

[10]  Myung J. Lee,et al.  Will IEEE 802.15.4 make ubiquitous networking a reality?: a discussion on a potential low power, low bit rate standard , 2004, IEEE Communications Magazine.

[11]  Vladimir Zadorozhny,et al.  Efficient Hybrid Channel Access for Data Intensive Sensor Networks , 2007, 21st International Conference on Advanced Information Networking and Applications Workshops (AINAW'07).

[12]  Vladimir Zadorozhny,et al.  Efficient Data Delivery in Wireless Sensor Networks: Algebraic Cross-layer Optimization Versus CSMA-CA , 2007, Ad Hoc Sens. Wirel. Networks.

[13]  Deborah Estrin,et al.  Geography-informed energy conservation for Ad Hoc routing , 2001, MobiCom '01.

[14]  Yang Xu,et al.  Scaling teamwork to very large teams , 2004, Proceedings of the Third International Joint Conference on Autonomous Agents and Multiagent Systems, 2004. AAMAS 2004..

[15]  Vladimir Zadorozhny,et al.  Tuning query performance in mobile sensor databases , 2005, MDM '05.

[16]  J. V. Bradley Complete Counterbalancing of Immediate Sequential Effects in a Latin Square Design , 1958 .

[17]  Wei Hong,et al.  The design of an acquisitional query processor for sensor networks , 2003, SIGMOD '03.

[18]  Kristofer S. J. Pister,et al.  CotsBots: an off-the-shelf platform for distributed robotics , 2003, Proceedings 2003 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS 2003) (Cat. No.03CH37453).

[19]  Gaurav S. Sukhatme,et al.  Robomote: a tiny mobile robot platform for large-scale ad-hoc sensor networks , 2002, Proceedings 2002 IEEE International Conference on Robotics and Automation (Cat. No.02CH37292).

[20]  Paul J.M. Havinga,et al.  A Lightweight Medium Access Protocol (LMAC) for Wireless Sensor Networks: Reducing Preamble Transmissions and Transceiver State Switches , 2004 .

[21]  Milind Tambe,et al.  A prototype infrastructure for distributed robot-agent-person teams , 2003, AAMAS '03.

[22]  Injong Rhee,et al.  Z-MAC: a hybrid MAC for wireless sensor networks , 2005, SenSys '05.

[23]  James V. Bradley Corrigenda: Complete Counterbalancing of Immediate Sequential Effects in a Latin Square Design , 1958 .

[24]  Sébastien Tixeuil,et al.  A Distributed TDMA Slot Assignment Algorithm for Wireless Sensor Networks , 2004, ALGOSENSORS.