Multiscale and Multiphysics Aspects in Modeling and Simulation of Surface Acoustic Wave Driven Microfluidic Biochips

Microfluidic biochips are devices that are designed for high throughput screening and hybridization in genomics, protein profiling in proteomics, and cell analysis in cytometry. They are used in clinical diagnostics, pharmaceutics and forensics. The biochips consist of a lithographically produced network of channels and reservoirs on top of a glass or plastic plate. The idea is to transport the injected DNA or protein probes in the amount of nanoliters along the network to a reservoir where the chemical analysis is performed. Conventional biochips use external pumps to generate the fluid flow within the network. A more precise control of the fluid flow can be achieved by piezoelectrically agitated surface acoustic waves (SAW) generated by interdigital transducers on top of the chip, traveling across the surface and entering the fluid filled channels. The fluid and SAW interaction can be described by a mathematical model which consists of a coupling of the piezoelectric equations and the compressible Navier-Stokes equations featuring processes that occur on vastly different time scales. In this contribution, we follow a homogenization approach in order to cope with the multiscale behavior of the coupled system that enables a separate treatment of the fast and slowly varying processes. The resulting model equations are the basis for the numerical simulation which is taken care of by implicit time stepping and finite element discretizations in space. Finally, the need for a better efficiency and cost effectiveness of the SAW driven biochips in the sense of a significant speed-up and more favorable reliability of the hybridization process requires an improved design which will also be addressed in this contribution. In particular, the challenge to deal with the resulting large scale optimal control and optimization problems can be met by the application of projection based model reduction techniques.

[1]  Stefan Ulbrich,et al.  A globally convergent primal-dual interior-point filter method for nonlinear programming , 2004, Math. Program..

[2]  Margaret H. Wright,et al.  Interior methods for constrained optimization , 1992, Acta Numerica.

[3]  Andrew J. Wathen,et al.  Fast iterative solution of stabilised Stokes systems, part I: using simple diagonal preconditioners , 1993 .

[4]  L. Tartar An Introduction to Sobolev Spaces and Interpolation Spaces , 2007 .

[5]  M. Heinkenschloss,et al.  Airfoil Design by an All-at-once Method* , 1998 .

[6]  Stephen J. Wright Primal-Dual Interior-Point Methods , 1997, Other Titles in Applied Mathematics.

[7]  M. Koshiba,et al.  Finite-element solution of Rayleigh-wave scattering from reflective gratings on a piezoelectric substrate , 1990, IEEE Transactions on Ultrasonics, Ferroelectrics and Frequency Control.

[8]  Ken-ya Hashimoto,et al.  Surface Acoustic Wave Propagation Characterisation by Finite-Element Method and Spectral Domain Analysis , 1995 .

[9]  Jacob K. White,et al.  Low-Rank Solution of Lyapunov Equations , 2004, SIAM Rev..

[10]  Clarence W. Rowley,et al.  Model Reduction for fluids, Using Balanced Proper Orthogonal Decomposition , 2005, Int. J. Bifurc. Chaos.

[11]  T. Tsuchiya,et al.  On the formulation and theory of the Newton interior-point method for nonlinear programming , 1996 .

[12]  J. Marsden,et al.  A subspace approach to balanced truncation for model reduction of nonlinear control systems , 2002 .

[13]  Stefan Volkwein,et al.  Proper orthogonal decomposition for optimality systems , 2008 .

[14]  Robert Weigel,et al.  Accurate and Efficient Modeling of SAW Structures , 2001 .

[15]  Fernando Paganini,et al.  A Course in Robust Control Theory , 2000 .

[16]  J. Zelenka Piezoelectric Resonators and their Applications , 1986 .

[17]  Ronald H. W. Hoppe,et al.  Primal–dual Newton interior point methods in shape and topology optimization , 2004, Numer. Linear Algebra Appl..

[18]  Peter Benner,et al.  Dimension Reduction of Large-Scale Systems , 2005 .

[19]  K. Glover All optimal Hankel-norm approximations of linear multivariable systems and their L, ∞ -error bounds† , 1984 .

[20]  Harbir Antil,et al.  Path-following primal-dual interior-point methods for shape optimization of stationary flow problems , 2007, J. Num. Math..

[21]  Apostol T. Vassilev,et al.  Analysis of the Inexact Uzawa Algorithm for Saddle Point Problems , 1997 .

[22]  A. Patera,et al.  A posteriori error bounds for reduced-basis approximations of parametrized parabolic partial differential equations , 2005 .

[23]  A. Wixforth,et al.  Microfluidics for miniaturized laboratories on a chip. , 2008, Chemphyschem : a European journal of chemical physics and physical chemistry.

[24]  Edward L. Wilson,et al.  Numerical methods in finite element analysis , 1976 .

[25]  Michel Fortin,et al.  Mixed and Hybrid Finite Element Methods , 2011, Springer Series in Computational Mathematics.

[26]  A. Wathen,et al.  Fast iterative solution of stabilised Stokes systems part II: using general block preconditioners , 1994 .

[27]  R. Bank,et al.  A class of iterative methods for solving saddle point problems , 1989 .

[28]  H. Elman Preconditioners for saddle point problems arising in computational fluid dynamics , 2002 .

[29]  Harbir Antil,et al.  Adaptive Multilevel Interior-Point Methods in PDE Constrained Optimization , 2009 .

[30]  Harbir Antil,et al.  Optimization and model reduction of time dependent PDE-constrained optimization problems: Applications to surface acoustic wave driven microfluidic biochips , 2009 .

[31]  C. Campbell Surface Acoustic Wave Devices and Their Signal Processing Applications , 1989 .

[32]  Anders Forsgren,et al.  Primal-Dual Interior Methods for Nonconvex Nonlinear Programming , 1998, SIAM J. Optim..

[33]  Zhi-Hao Cao Fast uzawa algorithm for generalized saddle point problems , 2003 .

[34]  N. Nguyen,et al.  EFFICIENT REDUCED-BASIS TREATMENT OF NONAFFINE AND NONLINEAR PARTIAL DIFFERENTIAL EQUATIONS , 2007 .

[35]  A. Antoulas,et al.  Special Issue on " Order Reduction of Large-scale Systems " , 2005 .

[36]  Ronald H. W. Hoppe,et al.  Primal-dual Newton Methods in Structural Optimization , 2006 .

[37]  E. Zeidler Nonlinear Functional Analysis and Its Applications: II/ A: Linear Monotone Operators , 1989 .

[38]  R. Lerch,et al.  Simulation of piezoelectric devices by two- and three-dimensional finite elements , 1990, IEEE Transactions on Ultrasonics, Ferroelectrics and Frequency Control.

[39]  Max Gunzburger,et al.  Perspectives in flow control and optimization , 1987 .

[40]  Kunibert G. Siebert,et al.  Modeling and Simulation of Piezoelectrically Agitated Acoustic Streaming on Microfluidic Biochips , 2008 .

[41]  Volker Mehrmann,et al.  Balanced Truncation Model Reduction for Large-Scale Systems in Descriptor Form , 2005 .

[42]  George Biros,et al.  Parallel Lagrange-Newton-Krylov-Schur Methods for PDE-Constrained Optimization. Part II: The Lagrange-Newton Solver and Its Application to Optimal Control of Steady Viscous Flows , 2005, SIAM J. Sci. Comput..

[43]  Raino A. E. Mäkinen,et al.  Introduction to shape optimization - theory, approximation, and computation , 2003, Advances in design and control.

[44]  Karen Willcox,et al.  Goal-oriented, model-constrained optimization for reduction of large-scale systems , 2007, J. Comput. Phys..

[45]  Jan Sokolowski,et al.  Introduction to shape optimization , 1992 .

[46]  E. Zeidler Nonlinear functional analysis and its applications , 1988 .

[47]  Gene H. Golub,et al.  A Preconditioner for Generalized Saddle Point Problems , 2004, SIAM J. Matrix Anal. Appl..

[48]  J. Haslinger,et al.  Finite Element Approximation for Optimal Shape Design: Theory and Applications , 1989 .

[49]  Jorge Nocedal,et al.  Adaptive Barrier Update Strategies for Nonlinear Interior Methods , 2008, SIAM J. Optim..

[50]  G. Whitesides The origins and the future of microfluidics , 2006, Nature.

[51]  B. Moore Principal component analysis in linear systems: Controllability, observability, and model reduction , 1981 .

[52]  Aaas News,et al.  Book Reviews , 1893, Buffalo Medical and Surgical Journal.

[53]  Marco Fahl,et al.  Reduced Order Modelling Approaches to PDE-Constrained Optimization Based on Proper Orthogonal Decomposition , 2003 .

[54]  Harbir Antil,et al.  Adaptive Path Following Primal Dual Interior Point Methods for Shape Optimization of Linear and Nonlinear Stokes Flow Problems , 2009, LSSC.

[55]  Lorenz T. Biegler,et al.  Line Search Filter Methods for Nonlinear Programming: Motivation and Global Convergence , 2005, SIAM J. Optim..

[56]  U. Langer,et al.  Finite element calculation of wave propagation and excitation in periodic piezoelectric systems , 2002 .

[57]  Jorge Nocedal,et al.  A trust region method based on interior point techniques for nonlinear programming , 2000, Math. Program..

[58]  Athanasios C. Antoulas,et al.  Approximation of Large-Scale Dynamical Systems , 2005, Advances in Design and Control.

[59]  Thilo Penzl Eigenvalue decay bounds for solutions of Lyapunov equations: the symmetric case , 2000 .

[60]  William G. Litvinov,et al.  Optimization in Elliptic Problems with Applications to Mechanics of Deformable Bodies and Fluid Mechanics , 2000 .

[61]  A. Cherkaev Variational Methods for Structural Optimization , 2000 .

[62]  Achim Wixforth,et al.  Numerical simulation of piezoelectrically agitated surface acoustic waves on microfluidic biochips , 2007 .

[63]  Stefan Volkwein,et al.  Galerkin Proper Orthogonal Decomposition Methods for a General Equation in Fluid Dynamics , 2002, SIAM J. Numer. Anal..

[64]  Achim Wixforth,et al.  Acoustically Driven Programmable Microfluidics for Biological and Chemical Applications , 2006 .

[65]  Andreas Griewank,et al.  Evaluating derivatives - principles and techniques of algorithmic differentiation, Second Edition , 2000, Frontiers in applied mathematics.

[66]  R. Hoppe,et al.  Optimal design of stationary flow problems by path-following interior-point methods , 2008 .

[67]  G. Allaire,et al.  Shape optimization by the homogenization method , 1997 .

[68]  Karen Willcox,et al.  Model Reduction for Large-Scale Systems with High-Dimensional Parametric Input Space , 2008, SIAM J. Sci. Comput..

[69]  R. Nicolaides Existence, Uniqueness and Approximation for Generalized Saddle Point Problems , 1982 .

[70]  G. Golub,et al.  Inexact and preconditioned Uzawa algorithms for saddle point problems , 1994 .

[71]  Howard M. Shapiro,et al.  Practical Flow Cytometry , 1985 .

[72]  F. Ihlenburg Finite Element Analysis of Acoustic Scattering , 1998 .

[73]  George Biros,et al.  Parallel Lagrange-Newton-Krylov-Schur Methods for PDE-Constrained Optimization. Part I: The Krylov-Schur Solver , 2005, SIAM J. Sci. Comput..

[74]  J. Pasciak,et al.  Parallel multilevel preconditioners , 1990 .

[75]  P. Ventura,et al.  Combined FEM and Green's function analysis of periodic SAW structure, application to the calculation of reflection and scattering parameters , 2001, IEEE Transactions on Ultrasonics, Ferroelectrics and Frequency Control.

[76]  Y. Saad,et al.  Numerical solution of large Lyapunov equations , 1989 .

[77]  A. Wixforth,et al.  Planar chip device for PCR and hybridization with surface acoustic wave pump. , 2005, Lab on a chip.

[78]  Anders Forsgren,et al.  Interior Methods for Nonlinear Optimization , 2002, SIAM Rev..

[79]  J. Peraire,et al.  Balanced Model Reduction via the Proper Orthogonal Decomposition , 2002 .

[80]  Danny C. Sorensen,et al.  A Modified Low-Rank Smith Method for Large-Scale Lyapunov Equations , 2004, Numerical Algorithms.

[81]  Olivier Pironneau,et al.  Applied Shape Optimization for Fluids, Second Edition , 2009, Numerical mathematics and scientific computation.

[82]  L. Vicente,et al.  A Globally Convergent Primal-Dual Interior-Point Filter Method for Nonconvex Nonlinear Programming , 2000 .

[83]  Danny C. Sorensen,et al.  Balanced Truncation Model Reduction for a Class of Descriptor Systems with Application to the Oseen Equations , 2008, SIAM J. Sci. Comput..

[84]  Jun Zou,et al.  Some Observations on Generalized Saddle-Point Problems , 2003, SIAM J. Matrix Anal. Appl..

[85]  Harbir Antil,et al.  Domain decomposition and model reduction for the numerical solution of PDE constrained optimization problems with localized optimization variables , 2010, Comput. Vis. Sci..

[86]  M. Delfour,et al.  Shapes and Geometries: Analysis, Differential Calculus, and Optimization , 1987 .

[87]  Andreas Wächter,et al.  A Primal-Dual Interior-Point Method for Nonlinear Programming with Strong Global and Local Convergence Properties , 2003, SIAM J. Optim..

[88]  Peter Benner,et al.  Numerical solution of large‐scale Lyapunov equations, Riccati equations, and linear‐quadratic optimal control problems , 2008, Numer. Linear Algebra Appl..

[89]  R. Hoppe,et al.  Primal-Dual Newton-Type Interior-Point Method for Topology Optimization , 2002 .

[90]  M. Omizo,et al.  Modeling , 1983, Encyclopedic Dictionary of Archaeology.

[91]  V. Komkov Optimal shape design for elliptic systems , 1986 .

[92]  Leslie Y Yeo,et al.  Ultrafast microfluidics using surface acoustic waves. , 2009, Biomicrofluidics.

[93]  Peter Deuflhard,et al.  Newton Methods for Nonlinear Problems , 2004 .

[94]  Zhaojun Bai,et al.  Reduced-Order Modeling , 2005 .

[95]  Axel Klawonn,et al.  An Optimal Preconditioner for a Class of Saddle Point Problems with a Penalty Term , 1995, SIAM J. Sci. Comput..

[96]  Harbir Antil,et al.  Reduced order modeling based shape optimization of surface acoustic wave driven microfluidic biochips , 2012, Math. Comput. Simul..

[97]  Harbir Antil,et al.  Modeling, Simulation and Optimization of Surface Acoustic Wave Driven Microfluidic Biochips , 2007 .

[98]  Gérard A. Maugin,et al.  Electrodynamics Of Continua , 1990 .

[99]  Gérard A. Maugin,et al.  Electrodynamics of Continua I: Foundations and Solid Media , 1989 .

[100]  Harbir Antil,et al.  Domain decomposition and balanced truncation model reduction for shape optimization of the Stokes system , 2011, Optim. Methods Softw..

[101]  Dominique Orban,et al.  Dynamic updates of the barrier parameter in primal-dual methods for nonlinear programming , 2008, Comput. Optim. Appl..

[102]  Anthony V. Fiacco,et al.  Nonlinear programming;: Sequential unconstrained minimization techniques , 1968 .

[103]  Stefan Volkwein,et al.  Galerkin proper orthogonal decomposition methods for parabolic problems , 2001, Numerische Mathematik.

[104]  P. Deuflhard Newton Methods for Nonlinear Problems: Affine Invariance and Adaptive Algorithms , 2011 .

[105]  J. Doyle,et al.  Robust and optimal control , 1995, Proceedings of 35th IEEE Conference on Decision and Control.

[106]  R. Freund Model reduction methods based on Krylov subspaces , 2003, Acta Numerica.

[107]  Robert J. Vanderbei,et al.  An Interior-Point Algorithm for Nonconvex Nonlinear Programming , 1999, Comput. Optim. Appl..

[108]  H. Kardestuncer,et al.  Finite element handbook , 1987 .

[109]  Gérard A. Maugin,et al.  Continuum Mechanics of Electromagnetic Solids , 1989 .

[110]  Martin P. Bendsøe,et al.  Optimization of Structural Topology, Shape, And Material , 1995 .