A comprehensive simplex-like algorithm for network optimization and perturbation analysis

The family of network optimization problems includes the following prototype models: assignment, critical path, max flow, shortest path, and transportation. Although it is long known that these problems can be modeled as linear programs (LP), this is generally not done. Due to the relative inefficiency and complexity of the simplex methods (primal, dual, and other variations) for network models, these problems are usually treated by one of over 100 specialized algorithms. This leads to several difficulties. The solution algorithms are not unified and each algorithm uses a different strategy to exploit the special structure of a specific problem. Furthermore, small variations in the problem, such as the introduction of side constraints, destroys the special structure and requires modifying andjor restarting the algorithm. Also, these algorithms obtain solution efficiency at the expense of managerial insight, as the final solutions from these algorithms do not have sufficient information to perform postopti...

[1]  Sergio Pissanetzky,et al.  Sparse Matrix Technology , 1984 .

[2]  F. Wondolowski A Generalization of Wendell's Tolerance Approach to Sensitivity Analysis in Linear Programming , 1991 .

[3]  Donald C. Aucamp,et al.  ON RANGING COST COEFFICIENTS IN DUAL DEGENERATE LINEAR PROGRAMMING PROBLEMS , 1983 .

[4]  V. Srinivasan,et al.  Cost operator algorithms for the transportation problem , 1977, Math. Program..

[5]  James B. Orlin,et al.  Parametric linear programming and anti-cycling pivoting rules , 1988, Math. Program..

[6]  Stephen J. Wright,et al.  Optimization Software Guide , 1987 .

[7]  Konstantinos Paparrizos,et al.  An infeasible (exterior point) simplex algorithm for assignment problems , 1991, Math. Program..

[8]  Robert E. Tarjan,et al.  Sensitivity Analysis of Minimum Spanning Trees and Shortest Path Trees , 1982, Inf. Process. Lett..

[9]  Nimrod Megiddo Combinatorial Optimization with Rational Objective Functions , 1979, Math. Oper. Res..

[10]  Richard D. McBride A bump triangular dynamic factorization algorithm for the simplex method , 1980, Math. Program..

[11]  Donald Goldfarb,et al.  A primal simplex algorithm that solves the maximum flow problem in at mostnm pivots and O(n2m) time , 1990, Math. Program..

[12]  Hossein Arsham,et al.  An implementation of Lagrangian decomposition in solving a multi-item production scheduling problem with changeover cost and restrictions , 1989 .

[13]  Donald Goldfarb,et al.  Anti-stalling pivot rules for the network simplex algorithm , 1990, Networks.

[14]  Richard S. Barr,et al.  Parallel Simplex for Large Pure Network Problems: Computational Testing and Sources of Speedup , 1994, Oper. Res..

[15]  D. R. Fulkerson,et al.  Flows in Networks. , 1964 .

[16]  N. Ravi,et al.  The tolerance approach to sensitivity analysis in network linear programming , 1988, Networks.

[17]  A. Goldberg,et al.  A new approach to the maximum-flow problem , 1988, JACM.

[18]  Nicholas I. M. Gould,et al.  New crash procedures for large systems of linear constraints , 1989, Math. Program..

[19]  Thomas L. Magnanti,et al.  Network Design and Transportation Planning: Models and Algorithms , 1984, Transp. Sci..

[20]  Michael D. Chang,et al.  An improved primal simplex variant for pure processing networks , 1989, TOMS.

[21]  Michael A. Saunders,et al.  A practical anti-cycling procedure for linearly constrained optimization , 1989, Math. Program..

[22]  John M. Mulvey,et al.  Testing of a large-scale network optimization program , 1978, Math. Program..

[23]  I. Duff,et al.  Direct Methods for Sparse Matrices , 1987 .

[24]  Guenther Ruhe,et al.  Characterization of all optimal solutions and parametric maximal mows in networks , 1985 .

[25]  R. Jonker,et al.  Improving the Hungarian assignment algorithm , 1986 .

[26]  T Van Vuren,et al.  RECENT DEVELOPMENTS IN PATH FINDING ALGORITHMS: A REVIEW , 1988 .

[27]  Ravindra K. Ahuja,et al.  Some Recent Advances in Network Flows , 1991, SIAM Rev..

[28]  Douglas R. Shier,et al.  Arc tolerances in shortest path and network flow problems , 1980, Networks.

[29]  Paul A. Jensen,et al.  An advanced dual incremental network algorithm , 1982, Networks.

[30]  James E. Ward,et al.  Approaches to sensitivity analysis in linear programming , 1991 .

[31]  J. L. Nazareth Computer solution of linear programs , 1987 .

[32]  Hanif D. Sherali,et al.  Linear Programming and Network Flows , 1977 .

[33]  Hsiao-Fan Wang,et al.  Multi-parametric analysis of the maximum tolerance in a linear programming problem , 1993 .

[34]  E. Klafszky,et al.  Variants of the Hungarian method for solving linear programming problems , 1989 .

[35]  W. H. Cunningham,et al.  Theoretical Properties of the Network Simplex Method , 1979, Math. Oper. Res..

[36]  A. Pierce Bibliography on Algorithms for Shortest Path, Shortest Spanning Tree, and Related Circuit Routing Problems (1956-1974) , 1975, Networks.

[37]  M. Yannakakis Expressing combinatorial optimization problems by linear programs , 1991, Symposium on the Theory of Computing.

[38]  Katta G. Murty,et al.  Network programming , 1992 .

[39]  M. C. Puri,et al.  Paradoxical situations in transportation problems , 1992 .

[40]  Patricia J. Carstensen Complexity of some parametric integer and network programming problems , 1983, Math. Program..

[41]  Jeffrey D. Camm,et al.  Cutting Big M Down to Size , 1990 .

[42]  Vijay Aggarwal,et al.  A Lagrangean-relaxation method for the constrained assignment problem , 1985, Comput. Oper. Res..

[43]  Peter Mevert,et al.  Network flow problems with one side constraint: A comparison of three solution methods , 1988, Comput. Oper. Res..

[44]  Jeffrey D. Camm,et al.  Sensitivity Analysis in Linear Programming Models with Common Inputs , 1991 .

[45]  S. Schönherr Resource allocation on condition of random resource demand of network activities , 1985 .

[46]  Ilker Baybars,et al.  Transmission facility planning in telecommunications networks: A heuristic approach , 1984 .

[47]  James J. Solberg,et al.  Operations Research: Principles and Practice. , 1977 .

[48]  Kurt Mehlhorn,et al.  Faster algorithms for the shortest path problem , 1990, JACM.

[49]  Jerzy Kamburowski,et al.  Minimum flows in (s, t) planar networks , 1991, Networks.

[50]  Ravindra K. Ahuja,et al.  A Fast and Simple Algorithm for the Maximum Flow Problem , 2011, Oper. Res..

[51]  Stavros A. Zenios Integrating network optimization capabilities into a high-level modeling language , 1990, TOMS.

[52]  Abraham Charnes,et al.  Degeneracy and the More-For-Less Paradox , 1980 .

[53]  Darwin Klingman,et al.  The alternating basis algorithm for assignment problems , 1977, Math. Program..

[54]  Wonjoon Choi,et al.  Dynamic Basis Partitioning for Network Flows with Side Constraints , 1992 .

[55]  G. M. Weber Sensitivity analysis of optimal matchings , 1981, Networks.

[56]  Contributions to the hungarian method , 1984 .

[57]  K. Mani Chandy,et al.  Distributed computation on graphs: shortest path algorithms , 1982, CACM.

[58]  H. Arsham,et al.  Perturbation analysis of general LP models: A unified approach to sensitivity, parametric, tolerance, and more-for-less analysis , 1990 .

[59]  J. K. Lenstra,et al.  Combinatorial optimization : annotated bibliographies , 1985 .

[60]  Fred W. Glover,et al.  An improved version of the out-of-kilter method and a comparative study of computer codes , 1974, Math. Program..

[61]  Eric R. Zieyel Operations research : applications and algorithms , 1988 .

[62]  John K. Reid,et al.  A sparsity-exploiting variant of the Bartels—Golub decomposition for linear programming bases , 1982, Math. Program..

[63]  I. M. Stancu-Minasian,et al.  A sixth bibliography of fractional programming , 2006 .

[64]  Hossein Arsham A tabular simplex-type algorithm as a teaching aid for general LP models , 1989 .

[65]  Dimitri P. Bertsekas,et al.  Data Networks , 1986 .

[66]  A. Pan,et al.  On Finding and Updating Spanning Trees and Shortest Paths , 1975, SIAM J. Comput..

[67]  M. D. Grigoriadis,et al.  An efficient implementation of the network simplex method , 1986 .

[68]  J. Orlin On the simplex algorithm for networks and generalized networks , 1983 .

[69]  H. Kunzi,et al.  Lectu re Notes in Economics and Mathematical Systems , 1975 .

[70]  Éva Tardos,et al.  Improved dual network simplex , 1990, SODA '90.

[71]  Bob Hattersley,et al.  A dual approach to primal degeneracy , 1988, Math. Program..

[72]  William H. Cunningham,et al.  On cycling in the network simplex method , 1983, Math. Program..

[73]  Ravindra K. Ahuja,et al.  The Scaling Network Simplex Algorithm , 1992, Oper. Res..

[74]  Fred W. Glover,et al.  Past, present and future of large scale transshipment computer codes and applications , 1975, Comput. Oper. Res..

[75]  A. Bakó,et al.  On the determination of the shortes path in a network having gains , 1973 .

[76]  Andrew V. Goldberg,et al.  Use of dynamic trees in a network simplex algorithm for the maximum flow problem , 1991, Math. Program..

[77]  Ming S. Hung,et al.  Technical Note - A Polynomial Simplex Method for the Assignment Problem , 1983, Oper. Res..

[78]  Billy E. Gillett,et al.  Introduction to Operations Research: A Computer-Oriented Algorithmic Approach , 1976 .

[79]  M. S. Hung,et al.  Performance of shortest path algorithms in network flow problems , 1990 .

[80]  H. Arsham,et al.  Postoptimality Analyses of the Transportation Problem , 1992 .

[81]  Dimitri P. Bertsekas,et al.  Linear network optimization - algorithms and codes , 1991 .

[82]  Pingqi Pan A simplex-like method with bisection for linear programming 1 , 1991 .

[83]  David L. Jensen,et al.  On the computational behavior of a polynomial-time network flow algorithm , 1992, Math. Program..

[84]  Hossein Arsham,et al.  A complete algorithm for linear fractional programs , 1990 .

[85]  J. Clausen A note on the Edmonds-Fukuda pivoting rule for simplex algorithms , 1987 .

[86]  Xiang-Sun Zhang,et al.  A note on the continuity of solutions of parametric linear programs , 1990, Math. Program..

[87]  Narsingh Deo,et al.  Shortest-path algorithms: Taxonomy and annotation , 1984, Networks.

[88]  Fred W. Glover,et al.  Network models in optimization and their applications in practice , 1992 .

[89]  Donald Goldfarb,et al.  A practicable steepest-edge simplex algorithm , 1977, Math. Program..

[90]  Hossein Arsham,et al.  A refined simplex algorithm for the classical transportation problem with application to parametric analysis , 1989 .

[91]  Robert E. Tarjan,et al.  Algorithms for maximum network flow , 1986 .

[92]  Darwin Klingman,et al.  Solving Constrained Transportation Problems , 1972, Oper. Res..

[93]  Noel Bryson Parametric programming and Lagrangian relaxation: the case of the network problem with a single side-constraint , 1991 .

[94]  Dorota Kuchta,et al.  A note on the paper “characterization of all optimal solutions and parametric maximal flows in networks” of G. Ruhe (optimization 16 (1985) 1, 51-61) , 1991 .

[95]  Paul J. Schweitzer,et al.  The zero pivot phenomenon in transportation and assignment problems and its computational implications , 1977, Math. Program..

[96]  H. Arsham,et al.  A linear symbolic-based approach to matrix inversion , 1993 .

[97]  Michael J. Ryan,et al.  The more-for-less paradox in linear programming , 1987 .

[98]  Yih-Long Chang,et al.  QSB+ : Quantitative systems for business plus , 1989 .

[99]  Dimitri P. Bertsekas,et al.  Auction algorithms for network flow problems: A tutorial introduction , 1992, Comput. Optim. Appl..

[100]  Pawel Winter,et al.  Topological network synthesis , 1989 .

[101]  Donald Goldfarb,et al.  Efficient Shortest Path Simplex Algorithms , 1990, Oper. Res..

[102]  John A. Tomlin,et al.  Updated triangular factors of the basis to maintain sparsity in the product form simplex method , 1972, Math. Program..

[103]  R. V. Helgason,et al.  Algorithms for network programming , 1980 .

[104]  Horst A. Eiselt,et al.  Continuous Optimization Models , 1987 .

[105]  Douglas R. Shier,et al.  Netsolve: Interactive software for network optimization , 1990 .

[106]  Hossein Arsham,et al.  Managing project activity-duration uncertainties , 1993 .

[107]  J. Kennington,et al.  Reoptimization procedures for bounded variable primal simplex network algorithms , 1986 .

[108]  Marc Gravel,et al.  Solving network manpower problems with side constraints , 1984 .

[109]  Klaus Truemper,et al.  Polynomial algorithms for a class of linear programs , 1981, Math. Program..

[110]  Ravindra K. Ahuja,et al.  New scaling algorithms for the assignment and minimum mean cycle problems , 1992, Math. Program..

[111]  Thomas L. Magnanti,et al.  Deterministic network optimization: A bibliography , 1977, Networks.

[112]  George B. Dantzig,et al.  Linear programming and extensions , 1965 .

[113]  William R. Pulleyblank,et al.  A network penalty method , 1991, Math. Program..

[114]  R. Shamir The Efficiency of the Simplex Method: A Survey , 1987 .

[115]  H. Arsham,et al.  A Simplex-Type Algorithm for General Transportation Problems: An Alternative to Stepping-Stone , 1989 .

[116]  Guenther Ruhe,et al.  Parametric maximal flows in generalized networks – complexity and algorithms , 1988 .

[117]  Gerald G. Brown,et al.  Solving Generalized Networks , 1984 .

[118]  C. Dinescu,et al.  Sensitive and parametric analysis of the maximum flow in a network , 1984 .

[119]  H. J. Greenberg Advanced basis construction in linear programming , 1986 .

[120]  Robert E. Bixby,et al.  Implementing the Simplex Method: The Initial Basis , 1992, INFORMS J. Comput..

[121]  Rema Padman,et al.  Dual Algorithms for Pure Network Problems , 1989, Oper. Res..

[122]  A. Victor Cabot,et al.  An introduction to management science , 1977 .

[123]  Norman Zadeh,et al.  A bad network problem for the simplex method and other minimum cost flow algorithms , 1973, Math. Program..

[124]  Ravindra K. Ahuja,et al.  Network Flows: Theory, Algorithms, and Applications , 1993 .

[125]  George B. Dantzig,et al.  Linear programming and extensions , 1965 .

[126]  Robert M. Freund,et al.  ALGORITHM FOR SOLVING A LINEAR PROGRAM DIRECTLY FROM AN INFEASIBLE "WARM START" , 1991 .

[127]  Donald Goldfarb,et al.  On the Bartels—Golub decomposition for linear programming bases , 1977, Math. Program..